On character variety of Anosov representations

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Krishnendu Gongopadhyay, Tathagata Nayak
{"title":"On character variety of Anosov representations","authors":"Krishnendu Gongopadhyay,&nbsp;Tathagata Nayak","doi":"10.1016/j.bulsci.2025.103621","DOIUrl":null,"url":null,"abstract":"<div><div>Let Γ be the fundamental group of a <em>k</em>-punctured, <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, closed connected orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. We show that the character variety of the <span><math><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov irreducible representations, resp. the character variety of the <span><math><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov Zariski dense representations of Γ into <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, is a complex manifold of complex dimension <span><math><mo>(</mo><mn>2</mn><mi>g</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>Γ</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, we also show that these character varieties are holomorphic symplectic manifolds.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103621"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000478","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let Γ be the fundamental group of a k-punctured, k0, closed connected orientable surface of genus g2. We show that the character variety of the (Q+,Q)-Anosov irreducible representations, resp. the character variety of the (P+,P)-Anosov Zariski dense representations of Γ into SL(n,C), n2, is a complex manifold of complex dimension (2g+k2)(n21). For Γ=π1(Σg), we also show that these character varieties are holomorphic symplectic manifolds.
设 Γ 是一个 k 穿孔、k≥0、封闭连通的可定向曲面的基群,其属度为 g≥2。我们证明,(Q+,Q-)-阿诺索夫不可还原表象的特征多样性,以及(P+,P-)-阿诺索夫扎里斯基稠密表象的特征多样性,是一个复维度为 (2g+k-2)(n2-1) 的复流形。对于Γ=π1(Σg),我们还证明了这些特征变体是全形交映流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信