{"title":"On character variety of Anosov representations","authors":"Krishnendu Gongopadhyay, Tathagata Nayak","doi":"10.1016/j.bulsci.2025.103621","DOIUrl":null,"url":null,"abstract":"<div><div>Let Γ be the fundamental group of a <em>k</em>-punctured, <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, closed connected orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. We show that the character variety of the <span><math><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov irreducible representations, resp. the character variety of the <span><math><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov Zariski dense representations of Γ into <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, is a complex manifold of complex dimension <span><math><mo>(</mo><mn>2</mn><mi>g</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>Γ</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, we also show that these character varieties are holomorphic symplectic manifolds.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103621"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000478","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let Γ be the fundamental group of a k-punctured, , closed connected orientable surface of genus . We show that the character variety of the -Anosov irreducible representations, resp. the character variety of the -Anosov Zariski dense representations of Γ into , , is a complex manifold of complex dimension . For , we also show that these character varieties are holomorphic symplectic manifolds.