加权伯格曼空间之间的加权Cesàro类型算子

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Petros Galanopoulos , Aristomenis G. Siskakis , Ruhan Zhao
{"title":"加权伯格曼空间之间的加权Cesàro类型算子","authors":"Petros Galanopoulos ,&nbsp;Aristomenis G. Siskakis ,&nbsp;Ruhan Zhao","doi":"10.1016/j.bulsci.2025.103622","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be the open unit disk in the complex plane <span><math><mi>C</mi></math></span>. Let <em>μ</em> be a positive Borel measure on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. If <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an analytic function in <span><math><mi>D</mi></math></span>, we consider for <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> the following weighted Cesàro type operator<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo><mspace></mspace><mi>Γ</mi><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mfrac><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <em>n</em>-th moment of <em>μ</em> given by <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><munder><mo>∫</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. We characterize boundedness of the weighted Cesàro type operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> from the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. Our method relies on a representation of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> as an integral operator with a kernel and a generalized Schur's test.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103622"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Cesàro type operators between weighted Bergman spaces\",\"authors\":\"Petros Galanopoulos ,&nbsp;Aristomenis G. Siskakis ,&nbsp;Ruhan Zhao\",\"doi\":\"10.1016/j.bulsci.2025.103622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi></math></span> be the open unit disk in the complex plane <span><math><mi>C</mi></math></span>. Let <em>μ</em> be a positive Borel measure on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. If <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an analytic function in <span><math><mi>D</mi></math></span>, we consider for <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> the following weighted Cesàro type operator<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo><mspace></mspace><mi>Γ</mi><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mfrac><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <em>n</em>-th moment of <em>μ</em> given by <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><munder><mo>∫</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. We characterize boundedness of the weighted Cesàro type operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> from the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. Our method relies on a representation of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> as an integral operator with a kernel and a generalized Schur's test.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103622\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000744972500048X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972500048X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设D为复平面c上的开单位盘,设μ为复平面[0,1)上的正Borel测度。如果f(z)=∑n=0∞,且zn是D中的解析函数,我们考虑对于β>;0的以下权重Cesàro型算子c μ,β(f)(z)=∑n=0∞μn(∑k=0nΓ(n−k+β)(n−k)!Γ(β)ak)zn,z∈D,其中μn是μ的n阶矩,由μn=∫[0,1)tndμ(t)给出。对于1≤p≤q<;∞,从加权Bergman空间Aαp到Aαq,刻画了加权Cesàro型算子Cμ,β的有界性。我们的方法依赖于Cμ,β作为带核的积分算子的表示和广义Schur检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Cesàro type operators between weighted Bergman spaces
Let D be the open unit disk in the complex plane C. Let μ be a positive Borel measure on [0,1). If f(z)=n=0anzn is an analytic function in D, we consider for β>0 the following weighted Cesàro type operatorCμ,β(f)(z)=n=0μn(k=0nΓ(nk+β)(nk)!Γ(β)ak)zn,zD, where μn is the n-th moment of μ given by μn=[0,1)tndμ(t). We characterize boundedness of the weighted Cesàro type operator Cμ,β from the weighted Bergman space Aαp to Aαq for 1pq<. Our method relies on a representation of Cμ,β as an integral operator with a kernel and a generalized Schur's test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信