{"title":"Homological projective duality for quadrics","authors":"A. Kuznetsov, Alexander Perry","doi":"10.1090/JAG/767","DOIUrl":"https://doi.org/10.1090/JAG/767","url":null,"abstract":"We show that over an algebraically closed field of characteristic not equal to 2, homological projective duality for smooth quadric hypersurfaces and for double covers of projective spaces branched over smooth quadric hypersurfaces is a combination of two operations: one interchanges a quadric hypersurface with its classical projective dual and the other interchanges a quadric hypersurface with the double cover branched along it.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48760564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A crystalline incarnation of Berthelot’s conjecture and Künneth formula for isocrystals","authors":"V. D. Proietto, F. Tonini, Lei Zhang","doi":"10.1090/jag/789","DOIUrl":"https://doi.org/10.1090/jag/789","url":null,"abstract":"Berthelot’s conjecture predicts that under a proper and smooth morphism of schemes in characteristic \u0000\u0000 \u0000 p\u0000 p\u0000 \u0000\u0000, the higher direct images of an overconvergent \u0000\u0000 \u0000 F\u0000 F\u0000 \u0000\u0000-isocrystal are overconvergent \u0000\u0000 \u0000 F\u0000 F\u0000 \u0000\u0000-isocrystals. In this paper we prove that this is true for crystals up to isogeny. As an application we prove the Künneth formula for the crystalline fundamental group scheme.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45766738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda
{"title":"The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians","authors":"Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda","doi":"10.1090/JAG/731","DOIUrl":"https://doi.org/10.1090/JAG/731","url":null,"abstract":"<p>Motivated by [J. Algebraic Geom. 27 (2018), pp. 203–209] and [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 936–939], we show the equality <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-bracket upper X right-bracket minus left-bracket upper Y right-bracket right-parenthesis dot left-bracket double-struck upper A Superscript 1 Baseline right-bracket equals 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow>\u0000 <mml:mo>(</mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mo>⋅<!-- ⋅ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">left ( [ X ] - [ Y ] right ) cdot [ mathbb {A} ^{ 1 } ] = 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the Grothendieck ring of varieties, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper Y right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">( X, Y )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a pair of Calabi-Yau 3-folds cut out from the pair of Grassmannians of type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">G _{ 2 }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60551171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudo-effective line bundles over holomorphically convex manifolds","authors":"Xiankui Meng, Xiangyu Zhou","doi":"10.1090/JAG/714","DOIUrl":"https://doi.org/10.1090/JAG/714","url":null,"abstract":"In the present paper, we consider the pseudo-effective line bundles over holomorphically convex manifolds and obtain some results related to the vanishing, finiteness, and surjectivity of analytic cohomology groups with multiplier ideal sheaves.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/714","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48252597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integral closures in real algebraic geometry","authors":"J. Monnier, G. Fichou, Ronan Quarez","doi":"10.1090/jag/769","DOIUrl":"https://doi.org/10.1090/jag/769","url":null,"abstract":"We study the algebraic and geometric properties of the integral closure of different rings of functions on a real algebraic variety: the regular functions and the continuous rational functions.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45028343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rational curves on prime Fano threefolds of index 1","authors":"Brian Lehmann, Sho Tanimoto","doi":"10.1090/jag/751","DOIUrl":"https://doi.org/10.1090/jag/751","url":null,"abstract":"We study the moduli spaces of rational curves on prime Fano threefolds of index 1. For general threefolds of most genera we compute the dimension and the number of irreducible components of these moduli spaces. Our results confirm Geometric Manin’s Conjecture in these examples and show the enumerativity of certain Gromov-Witten invariants.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46708893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Donaldson–Thomas invariants of abelian threefolds and Bridgeland stability conditions","authors":"G. Oberdieck, D. Piyaratne, Yukinobu Toda","doi":"10.1090/JAG/788","DOIUrl":"https://doi.org/10.1090/JAG/788","url":null,"abstract":"We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical criterion for the absence of walls in terms of a discriminant function. For principally polarized abelian threefolds of Picard rank one, the wall-crossing contributions are discussed in detail. The discussion yields evidence for a conjectural formula for curve counting invariants by Bryan, Pandharipande, Yin, and the first author.\u0000\u0000For the proof we strengthen several known results on Bridgeland stability conditions of abelian threefolds. We show that certain previously constructed stability conditions satisfy the full support property. In particular, the stability manifold is non-empty. We also prove the existence of a Gieseker chamber and determine all wall-crossing contributions. A definition of reduced generalized Donaldson–Thomas invariants for arbitrary Calabi–Yau threefolds with abelian actions is given.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46311841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence","authors":"K. Ardakov, S. Wadsley","doi":"10.1090/JAG/709","DOIUrl":"https://doi.org/10.1090/JAG/709","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a smooth rigid analytic space. We prove that the category of co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_X}</tex-math></inline-formula>-modules supported on a closed smooth subvariety <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\u0000 <mml:semantics>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is naturally equivalent to the category of co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_Y}</tex-math></inline-formula>-modules and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_X}</tex-math></inline-formula>-modules.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45772115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bivariant derived algebraic cobordism","authors":"Toni Annala","doi":"10.1090/jag/754","DOIUrl":"https://doi.org/10.1090/jag/754","url":null,"abstract":"We extend the derived algebraic bordism of Lowrey and Schürg to a bivariant theory in the sense of Fulton and MacPherson and establish some of its basic properties. As a special case, we obtain a completely new theory of cobordism rings of singular quasi-projective schemes. The extended cobordism is shown to specialize to algebraic \u0000\u0000 \u0000 \u0000 K\u0000 0\u0000 \u0000 K^0\u0000 \u0000\u0000 analogously to the Conner-Floyd theorem in topology. We also give a candidate for the correct definition of Chow rings of singular schemes.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49028393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}