Journal of Algebraic Geometry最新文献

筛选
英文 中文
Homological projective duality for quadrics 二次曲面的同调投影对偶性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2019-02-26 DOI: 10.1090/JAG/767
A. Kuznetsov, Alexander Perry
{"title":"Homological projective duality for quadrics","authors":"A. Kuznetsov, Alexander Perry","doi":"10.1090/JAG/767","DOIUrl":"https://doi.org/10.1090/JAG/767","url":null,"abstract":"We show that over an algebraically closed field of characteristic not equal to 2, homological projective duality for smooth quadric hypersurfaces and for double covers of projective spaces branched over smooth quadric hypersurfaces is a combination of two operations: one interchanges a quadric hypersurface with its classical projective dual and the other interchanges a quadric hypersurface with the double cover branched along it.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48760564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A crystalline incarnation of Berthelot’s conjecture and Künneth formula for isocrystals Bertelot猜想和Künneth等晶公式的结晶化身
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-12-12 DOI: 10.1090/jag/789
V. D. Proietto, F. Tonini, Lei Zhang
{"title":"A crystalline incarnation of Berthelot’s conjecture and Künneth formula for isocrystals","authors":"V. D. Proietto, F. Tonini, Lei Zhang","doi":"10.1090/jag/789","DOIUrl":"https://doi.org/10.1090/jag/789","url":null,"abstract":"Berthelot’s conjecture predicts that under a proper and smooth morphism of schemes in characteristic \u0000\u0000 \u0000 p\u0000 p\u0000 \u0000\u0000, the higher direct images of an overconvergent \u0000\u0000 \u0000 F\u0000 F\u0000 \u0000\u0000-isocrystal are overconvergent \u0000\u0000 \u0000 F\u0000 F\u0000 \u0000\u0000-isocrystals. In this paper we prove that this is true for crystals up to isogeny. As an application we prove the Künneth formula for the crystalline fundamental group scheme.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45766738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
𝜇_{𝑝}- and 𝛼_{𝑝}-actions on K3 surfaces in characteristic 𝑝 𝜇_{𝑝}-和𝛼_{𝑝}-作用在K3表面上的特征𝑝
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-12-09 DOI: 10.1090/jag/804
Y. Matsumoto
{"title":"𝜇_{𝑝}- and 𝛼_{𝑝}-actions on K3 surfaces in characteristic 𝑝","authors":"Y. Matsumoto","doi":"10.1090/jag/804","DOIUrl":"https://doi.org/10.1090/jag/804","url":null,"abstract":"<p>We consider <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mu _p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>- and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>α<!-- α --></mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">alpha _p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p > 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mu _p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>- and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>α<!-- α --></mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">alpha _p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-actions are analogous to those of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash l double-struck upper Z\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>l</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Z}/lmathbb {Z}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-actions (for primes <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l not-equals p\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>l</mml:m","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47964130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians 仿射线的类是Grothendieck环上的零因子:通过𝐺₂-Grassmannians
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-12-06 DOI: 10.1090/JAG/731
Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda
{"title":"The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians","authors":"Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda","doi":"10.1090/JAG/731","DOIUrl":"https://doi.org/10.1090/JAG/731","url":null,"abstract":"<p>Motivated by [J. Algebraic Geom. 27 (2018), pp. 203–209] and [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 936–939], we show the equality <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-bracket upper X right-bracket minus left-bracket upper Y right-bracket right-parenthesis dot left-bracket double-struck upper A Superscript 1 Baseline right-bracket equals 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow>\u0000 <mml:mo>(</mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mo>⋅<!-- ⋅ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">left ( [ X ] - [ Y ] right ) cdot [ mathbb {A} ^{ 1 } ] = 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the Grothendieck ring of varieties, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper Y right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">( X, Y )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a pair of Calabi-Yau 3-folds cut out from the pair of Grassmannians of type <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">G _{ 2 }</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60551171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-effective line bundles over holomorphically convex manifolds 全纯凸流形上的伪有效线束
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-10-16 DOI: 10.1090/JAG/714
Xiankui Meng, Xiangyu Zhou
{"title":"Pseudo-effective line bundles over holomorphically convex manifolds","authors":"Xiankui Meng, Xiangyu Zhou","doi":"10.1090/JAG/714","DOIUrl":"https://doi.org/10.1090/JAG/714","url":null,"abstract":"In the present paper, we consider the pseudo-effective line bundles over holomorphically convex manifolds and obtain some results related to the vanishing, finiteness, and surjectivity of analytic cohomology groups with multiplier ideal sheaves.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/714","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48252597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Integral closures in real algebraic geometry 实代数几何中的积分闭包
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-10-16 DOI: 10.1090/jag/769
J. Monnier, G. Fichou, Ronan Quarez
{"title":"Integral closures in real algebraic geometry","authors":"J. Monnier, G. Fichou, Ronan Quarez","doi":"10.1090/jag/769","DOIUrl":"https://doi.org/10.1090/jag/769","url":null,"abstract":"We study the algebraic and geometric properties of the integral closure of different rings of functions on a real algebraic variety: the regular functions and the continuous rational functions.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45028343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Rational curves on prime Fano threefolds of index 1 指数1的素数Fano三重上的有理曲线
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-08-16 DOI: 10.1090/jag/751
Brian Lehmann, Sho Tanimoto
{"title":"Rational curves on prime Fano threefolds of index 1","authors":"Brian Lehmann, Sho Tanimoto","doi":"10.1090/jag/751","DOIUrl":"https://doi.org/10.1090/jag/751","url":null,"abstract":"We study the moduli spaces of rational curves on prime Fano threefolds of index 1. For general threefolds of most genera we compute the dimension and the number of irreducible components of these moduli spaces. Our results confirm Geometric Manin’s Conjecture in these examples and show the enumerativity of certain Gromov-Witten invariants.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46708893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Donaldson–Thomas invariants of abelian threefolds and Bridgeland stability conditions 阿贝尔三重的Donaldson–Thomas不变量和Bridgeland稳定性条件
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-08-08 DOI: 10.1090/JAG/788
G. Oberdieck, D. Piyaratne, Yukinobu Toda
{"title":"Donaldson–Thomas invariants of abelian threefolds and Bridgeland stability conditions","authors":"G. Oberdieck, D. Piyaratne, Yukinobu Toda","doi":"10.1090/JAG/788","DOIUrl":"https://doi.org/10.1090/JAG/788","url":null,"abstract":"We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical criterion for the absence of walls in terms of a discriminant function. For principally polarized abelian threefolds of Picard rank one, the wall-crossing contributions are discussed in detail. The discussion yields evidence for a conjectural formula for curve counting invariants by Bryan, Pandharipande, Yin, and the first author.\u0000\u0000For the proof we strengthen several known results on Bridgeland stability conditions of abelian threefolds. We show that certain previously constructed stability conditions satisfy the full support property. In particular, the stability manifold is non-empty. We also prove the existence of a Gieseker chamber and determine all wall-crossing contributions. A definition of reduced generalized Donaldson–Thomas invariants for arbitrary Calabi–Yau threefolds with abelian actions is given.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46311841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence 刚性解析空间上的 widdeparen{}-模II: Kashiwara的等价性
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-07-19 DOI: 10.1090/JAG/709
K. Ardakov, S. Wadsley
{"title":"wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence","authors":"K. Ardakov, S. Wadsley","doi":"10.1090/JAG/709","DOIUrl":"https://doi.org/10.1090/JAG/709","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a smooth rigid analytic space. We prove that the category of co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_X}</tex-math></inline-formula>-modules supported on a closed smooth subvariety <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\u0000 <mml:semantics>\u0000 <mml:mi>Y</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is naturally equivalent to the category of co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_Y}</tex-math></inline-formula>-modules and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <inline-formula content-type=\"math/tex\">\u0000<tex-math>\u0000wideparen {mathcal {D}_X}</tex-math></inline-formula>-modules.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45772115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Bivariant derived algebraic cobordism 双变元代数同基
IF 1.8 1区 数学
Journal of Algebraic Geometry Pub Date : 2018-07-13 DOI: 10.1090/jag/754
Toni Annala
{"title":"Bivariant derived algebraic cobordism","authors":"Toni Annala","doi":"10.1090/jag/754","DOIUrl":"https://doi.org/10.1090/jag/754","url":null,"abstract":"We extend the derived algebraic bordism of Lowrey and Schürg to a bivariant theory in the sense of Fulton and MacPherson and establish some of its basic properties. As a special case, we obtain a completely new theory of cobordism rings of singular quasi-projective schemes. The extended cobordism is shown to specialize to algebraic \u0000\u0000 \u0000 \u0000 K\u0000 0\u0000 \u0000 K^0\u0000 \u0000\u0000 analogously to the Conner-Floyd theorem in topology. We also give a candidate for the correct definition of Chow rings of singular schemes.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49028393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信