刚性解析空间上的\ widdeparen{}-模II: Kashiwara的等价性

Pub Date : 2018-07-19 DOI:10.1090/JAG/709
K. Ardakov, S. Wadsley
{"title":"刚性解析空间上的\\ widdeparen{}-模II: Kashiwara的等价性","authors":"K. Ardakov, S. Wadsley","doi":"10.1090/JAG/709","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a smooth rigid analytic space. We prove that the category of co-admissible <inline-formula content-type=\"math/tex\">\n<tex-math>\n\\wideparen {\\mathcal {D}_X}</tex-math></inline-formula>-modules supported on a closed smooth subvariety <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is naturally equivalent to the category of co-admissible <inline-formula content-type=\"math/tex\">\n<tex-math>\n\\wideparen {\\mathcal {D}_Y}</tex-math></inline-formula>-modules and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <inline-formula content-type=\"math/tex\">\n<tex-math>\n\\wideparen {\\mathcal {D}_X}</tex-math></inline-formula>-modules.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/709","citationCount":"4","resultStr":"{\"title\":\"\\\\wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence\",\"authors\":\"K. Ardakov, S. Wadsley\",\"doi\":\"10.1090/JAG/709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a smooth rigid analytic space. We prove that the category of co-admissible <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\n\\\\wideparen {\\\\mathcal {D}_X}</tex-math></inline-formula>-modules supported on a closed smooth subvariety <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\">\\n <mml:semantics>\\n <mml:mi>Y</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is naturally equivalent to the category of co-admissible <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\n\\\\wideparen {\\\\mathcal {D}_Y}</tex-math></inline-formula>-modules and use this result to construct a large family of pairwise non-isomorphic simple co-admissible <inline-formula content-type=\\\"math/tex\\\">\\n<tex-math>\\n\\\\wideparen {\\\\mathcal {D}_X}</tex-math></inline-formula>-modules.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/709\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设X X是一个光滑的刚性分析空间。我们证明了共容许宽括号的范畴{D}_X}-X X的闭光滑子变种Y Y上支持的模自然等价于共容许宽括号的范畴{D}_Y}-模,并利用这个结果来构造一个大的成对非同构简单共容许\宽paren{\mathcal族{D}_X}-模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
\wideparen{𝒟}-modules on rigid analytic spaces II: Kashiwara’s equivalence

Let X X be a smooth rigid analytic space. We prove that the category of co-admissible \wideparen {\mathcal {D}_X}-modules supported on a closed smooth subvariety Y Y of X X is naturally equivalent to the category of co-admissible \wideparen {\mathcal {D}_Y}-modules and use this result to construct a large family of pairwise non-isomorphic simple co-admissible \wideparen {\mathcal {D}_X}-modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信