{"title":"二次曲面的同调投影对偶性","authors":"A. Kuznetsov, Alexander Perry","doi":"10.1090/JAG/767","DOIUrl":null,"url":null,"abstract":"We show that over an algebraically closed field of characteristic not equal to 2, homological projective duality for smooth quadric hypersurfaces and for double covers of projective spaces branched over smooth quadric hypersurfaces is a combination of two operations: one interchanges a quadric hypersurface with its classical projective dual and the other interchanges a quadric hypersurface with the double cover branched along it.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Homological projective duality for quadrics\",\"authors\":\"A. Kuznetsov, Alexander Perry\",\"doi\":\"10.1090/JAG/767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that over an algebraically closed field of characteristic not equal to 2, homological projective duality for smooth quadric hypersurfaces and for double covers of projective spaces branched over smooth quadric hypersurfaces is a combination of two operations: one interchanges a quadric hypersurface with its classical projective dual and the other interchanges a quadric hypersurface with the double cover branched along it.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/767\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/767","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that over an algebraically closed field of characteristic not equal to 2, homological projective duality for smooth quadric hypersurfaces and for double covers of projective spaces branched over smooth quadric hypersurfaces is a combination of two operations: one interchanges a quadric hypersurface with its classical projective dual and the other interchanges a quadric hypersurface with the double cover branched along it.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.