双变元代数同基

Pub Date : 2018-07-13 DOI:10.1090/jag/754
Toni Annala
{"title":"双变元代数同基","authors":"Toni Annala","doi":"10.1090/jag/754","DOIUrl":null,"url":null,"abstract":"We extend the derived algebraic bordism of Lowrey and Schürg to a bivariant theory in the sense of Fulton and MacPherson and establish some of its basic properties. As a special case, we obtain a completely new theory of cobordism rings of singular quasi-projective schemes. The extended cobordism is shown to specialize to algebraic \n\n \n \n K\n 0\n \n K^0\n \n\n analogously to the Conner-Floyd theorem in topology. We also give a candidate for the correct definition of Chow rings of singular schemes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Bivariant derived algebraic cobordism\",\"authors\":\"Toni Annala\",\"doi\":\"10.1090/jag/754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the derived algebraic bordism of Lowrey and Schürg to a bivariant theory in the sense of Fulton and MacPherson and establish some of its basic properties. As a special case, we obtain a completely new theory of cobordism rings of singular quasi-projective schemes. The extended cobordism is shown to specialize to algebraic \\n\\n \\n \\n K\\n 0\\n \\n K^0\\n \\n\\n analogously to the Conner-Floyd theorem in topology. We also give a candidate for the correct definition of Chow rings of singular schemes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们将Lowrey和Schürg的代数边界论推广到Fulton和MacPherson意义上的双变理论,并建立了它的一些基本性质。作为一个特例,我们得到了奇异拟投影格式的同基环的一个全新理论。与拓扑中的Conner-Floyd定理类似,扩展共基数被证明专门化为代数K0K^0。我们还给出了奇异方案的Chow环的正确定义的一个候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bivariant derived algebraic cobordism
We extend the derived algebraic bordism of Lowrey and Schürg to a bivariant theory in the sense of Fulton and MacPherson and establish some of its basic properties. As a special case, we obtain a completely new theory of cobordism rings of singular quasi-projective schemes. The extended cobordism is shown to specialize to algebraic K 0 K^0 analogously to the Conner-Floyd theorem in topology. We also give a candidate for the correct definition of Chow rings of singular schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信