{"title":"𝜇_{𝑝}- and 𝛼_{𝑝}-actions on K3 surfaces in characteristic 𝑝","authors":"Y. Matsumoto","doi":"10.1090/jag/804","DOIUrl":null,"url":null,"abstract":"<p>We consider <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions are analogous to those of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash l double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>l</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/l\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions (for primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l not-equals p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>l</mml:mi>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">l \\neq p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash p double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/p\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash p double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/p\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/804","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22.
我们考虑μ p \mu _p -和α p \alpha _p -作用在特征p > 0 p > 0的RDP K3曲面(允许有有理双点(RDP)奇点的K3曲面)上。我们研究可能的特征,商曲面和商奇点。结果表明,μ p \mu _p -和α p \alpha _p -作用的这些性质类似于Z/l Z \mathbb Z{/l }\mathbb Z{ -作用(对于素数l≠p l }\neq p)和Z/p Z \mathbb Z{/p分别为}\mathbb Z{商。相反地,我们还证明了具有一定奇异位形的RDP K3曲面允许μ p }\mu _p -或α p \alpha _p -或Z/p Z \mathbb Z{/p }\mathbb Z{ -被“类K3”曲面覆盖,该曲面通常是RDP K3曲面,但并不总是这样。就像特征22中Enriques曲面的典型覆盖一样。}
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.