𝜇_{𝑝}-和𝛼_{𝑝}-作用在K3表面上的特征𝑝

IF 0.9 1区 数学 Q2 MATHEMATICS
Y. Matsumoto
{"title":"𝜇_{𝑝}-和𝛼_{𝑝}-作用在K3表面上的特征𝑝","authors":"Y. Matsumoto","doi":"10.1090/jag/804","DOIUrl":null,"url":null,"abstract":"<p>We consider <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions are analogous to those of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash l double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>l</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/l\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-actions (for primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"l not-equals p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>l</mml:mi>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">l \\neq p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash p double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/p\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z slash p double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}/p\\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"𝜇_{𝑝}- and 𝛼_{𝑝}-actions on K3 surfaces in characteristic 𝑝\",\"authors\":\"Y. Matsumoto\",\"doi\":\"10.1090/jag/804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>- and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p > 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>- and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-actions are analogous to those of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z slash l double-struck upper Z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>l</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}/l\\\\mathbb {Z}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-actions (for primes <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"l not-equals p\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>l</mml:mi>\\n <mml:mo>≠<!-- ≠ --></mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">l \\\\neq p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z slash p double-struck upper Z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}/p\\\\mathbb {Z}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>- or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>- or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z slash p double-struck upper Z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}/p\\\\mathbb {Z}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/804\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/804","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑μ p \mu _p -和α p \alpha _p -作用在特征p > 0 p > 0的RDP K3曲面(允许有有理双点(RDP)奇点的K3曲面)上。我们研究可能的特征,商曲面和商奇点。结果表明,μ p \mu _p -和α p \alpha _p -作用的这些性质类似于Z/l Z \mathbb Z{/l }\mathbb Z{ -作用(对于素数l≠p l }\neq p)和Z/p Z \mathbb Z{/p分别为}\mathbb Z{商。相反地,我们还证明了具有一定奇异位形的RDP K3曲面允许μ p }\mu _p -或α p \alpha _p -或Z/p Z \mathbb Z{/p }\mathbb Z{ -被“类K3”曲面覆盖,该曲面通常是RDP K3曲面,但并不总是这样。就像特征22中Enriques曲面的典型覆盖一样。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
𝜇_{𝑝}- and 𝛼_{𝑝}-actions on K3 surfaces in characteristic 𝑝

We consider μ p \mu _p - and α p \alpha _p -actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p > 0 p > 0 . We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μ p \mu _p - and α p \alpha _p -actions are analogous to those of Z / l Z \mathbb {Z}/l\mathbb {Z} -actions (for primes l p l \neq p ) and Z / p Z \mathbb {Z}/p\mathbb {Z} -quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μ p \mu _p - or α p \alpha _p - or Z / p Z \mathbb {Z}/p\mathbb {Z} -covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 2 2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信