The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians

IF 0.9 1区 数学 Q2 MATHEMATICS
Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda
{"title":"The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians","authors":"Atsushi Ito, Makoto Miura, Shinnosuke Okawa, K. Ueda","doi":"10.1090/JAG/731","DOIUrl":null,"url":null,"abstract":"<p>Motivated by [J. Algebraic Geom. 27 (2018), pp. 203–209] and [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 936–939], we show the equality <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-bracket upper X right-bracket minus left-bracket upper Y right-bracket right-parenthesis dot left-bracket double-struck upper A Superscript 1 Baseline right-bracket equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\left ( [ X ] - [ Y ] \\right ) \\cdot [ \\mathbb {A} ^{ 1 } ] = 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the Grothendieck ring of varieties, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma upper Y right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">( X, Y )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a pair of Calabi-Yau 3-folds cut out from the pair of Grassmannians of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>G</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">G _{ 2 }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/731","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by [J. Algebraic Geom. 27 (2018), pp. 203–209] and [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 936–939], we show the equality ( [ X ] [ Y ] ) [ A 1 ] = 0 \left ( [ X ] - [ Y ] \right ) \cdot [ \mathbb {A} ^{ 1 } ] = 0 in the Grothendieck ring of varieties, where ( X , Y ) ( X, Y ) is a pair of Calabi-Yau 3-folds cut out from the pair of Grassmannians of type G 2 G _{ 2 } .

仿射线的类是Grothendieck环上的零因子:通过𝐺₂-Grassmannians
[J]代数几何,27 (2018),pp. 203-209 [j]。r .数学。学会科学。(Paris 354 (2016), pp. 936-939),我们证明了在Grothendieck环上的等式([X]−[Y])⋅[A 1] = 0 \left ([X] - [Y] \right) \cdot [\mathbb {A} ^{1}] = 0,其中(X, Y) (X,Y)是一对从G 2 G _{2}型格拉斯曼人身上剪下来的卡拉比-丘三褶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信