Proceedings of the Royal Society of Edinburgh Section A-Mathematics最新文献

筛选
英文 中文
Nowhere scattered multiplier algebras 无处不在的乘法代数
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-01-05 DOI: 10.1017/prm.2023.123
Eduard Vilalta
{"title":"Nowhere scattered multiplier algebras","authors":"Eduard Vilalta","doi":"10.1017/prm.2023.123","DOIUrl":"https://doi.org/10.1017/prm.2023.123","url":null,"abstract":"<p>We study sufficient conditions under which a nowhere scattered <span><span><span data-mathjax-type=\"texmath\"><span>$mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline1.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline2.png\"/></span></span> has a nowhere scattered multiplier algebra <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline3.png\"/></span></span>, that is, we study when <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline4.png\"/></span></span> has no nonzero, elementary ideal-quotients. In particular, we prove that a <span><span><span data-mathjax-type=\"texmath\"><span>$sigma$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline5.png\"/></span></span>-unital <span><span><span data-mathjax-type=\"texmath\"><span>$mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline6.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline7.png\"/></span></span> of</p><ol><li><p><span>(i)</span> finite nuclear dimension, or</p></li><li><p><span>(ii)</span> real rank zero, or</p></li><li><p><span>(iii)</span> stable rank one with <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline8.png\"/></span></span>-comparison,</p></li></ol> is nowhere scattered if and only if <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139103518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Calderon's problem for the connection Laplacian 关于连接拉普拉奇的卡尔德隆问题
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2024-01-05 DOI: 10.1017/prm.2023.127
Ravil Gabdurakhmanov, Gerasim Kokarev
{"title":"On Calderon's problem for the connection Laplacian","authors":"Ravil Gabdurakhmanov, Gerasim Kokarev","doi":"10.1017/prm.2023.127","DOIUrl":"https://doi.org/10.1017/prm.2023.127","url":null,"abstract":"<p>We consider Calderón's problem for the connection Laplacian on a real-analytic vector bundle over a manifold with boundary. We prove a uniqueness result for this problem when all geometric data are real-analytic, recovering the topology and geometry of a vector bundle up to a gauge transformation and an isometry of the base manifold.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Various topological complexities of small covers and real Bott manifolds 小封面和实底流形的各种拓扑复杂性
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-12-27 DOI: 10.1017/prm.2023.124
Koushik Brahma, Bikramaditya Naskar, Soumen Sarkar, Subhankar Sau
{"title":"Various topological complexities of small covers and real Bott manifolds","authors":"Koushik Brahma, Bikramaditya Naskar, Soumen Sarkar, Subhankar Sau","doi":"10.1017/prm.2023.124","DOIUrl":"https://doi.org/10.1017/prm.2023.124","url":null,"abstract":"In this paper, we compute the LS-category and equivariant LS-category of a small cover and its real moment angle manifold. We calculate a tight lower bound for the topological complexity of many small covers over a product of simplices. Then we compute symmetric topological complexity of several small covers over a product of simplices. We calculate the LS one-category of real Bott manifolds and infinitely many small covers.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lower bounds of non-real eigenvalues for singular indefinite Sturm–Liouville problems 奇异不定 Sturm-Liouville 问题的非实特征值下界
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-12-22 DOI: 10.1017/prm.2023.126
Fu Sun
{"title":"The lower bounds of non-real eigenvalues for singular indefinite Sturm–Liouville problems","authors":"Fu Sun","doi":"10.1017/prm.2023.126","DOIUrl":"https://doi.org/10.1017/prm.2023.126","url":null,"abstract":"The present paper deals with the non-real eigenvalues for singular indefinite Sturm–Liouville problems. The lower bounds on non-real eigenvalues for this singular problem associated with a special separated boundary condition are obtained.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semilinear elliptic equations involving power nonlinearities and Hardy potentials with boundary singularities 涉及幂非线性和具有边界奇点的哈代势的半线性椭圆方程
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-12-21 DOI: 10.1017/prm.2023.122
Konstantinos T. Gkikas, Phuoc-Tai Nguyen
{"title":"Semilinear elliptic equations involving power nonlinearities and Hardy potentials with boundary singularities","authors":"Konstantinos T. Gkikas, Phuoc-Tai Nguyen","doi":"10.1017/prm.2023.122","DOIUrl":"https://doi.org/10.1017/prm.2023.122","url":null,"abstract":"<p>Let <span><span><span data-mathjax-type=\"texmath\"><span>$Omega subset mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline1.png\"/></span></span> (<span><span><span data-mathjax-type=\"texmath\"><span>$Ngeq 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline2.png\"/></span></span>) be a <span><span><span data-mathjax-type=\"texmath\"><span>$C^2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline3.png\"/></span></span> bounded domain and <span><span><span data-mathjax-type=\"texmath\"><span>$Sigma subset partial Omega$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline4.png\"/></span></span> be a <span><span><span data-mathjax-type=\"texmath\"><span>$C^2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline5.png\"/></span></span> compact submanifold without boundary, of dimension <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline6.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$0leq k leq N-1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline7.png\"/></span></span>. We assume that <span><span><span data-mathjax-type=\"texmath\"><span>$Sigma = {0}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline8.png\"/></span></span> if <span><span><span data-mathjax-type=\"texmath\"><span>$k = 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline9.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$Sigma =partial Omega$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220091413004-0011:S0308210523001221:S0308210523001221_inline10.png\"/></span></span> if","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"35 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138825472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On stable commutator length of non-filling curves in surfaces 论曲面非填充曲线的稳定换向器长度
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-12-14 DOI: 10.1017/prm.2023.121
Max Forester, Justin Malestein
{"title":"On stable commutator length of non-filling curves in surfaces","authors":"Max Forester, Justin Malestein","doi":"10.1017/prm.2023.121","DOIUrl":"https://doi.org/10.1017/prm.2023.121","url":null,"abstract":"<p>We give a new proof of rationality of stable commutator length (scl) of certain elements in surface groups: those represented by curves that do not fill the surface. Such elements always admit extremal surfaces for scl. These results also hold more generally for non-filling <span><span><span data-mathjax-type=\"texmath\"><span>$1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213131917887-0965:S030821052300121X:S030821052300121X_inline1.png\"/></span></span>–chains.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"287 1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitions with parts separated by parity: conjugation, congruences and the mock theta functions 用宇称分割部分:共轭,同余和模拟函数
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-11-30 DOI: 10.1017/prm.2023.119
Shishuo Fu, Dazhao Tang
{"title":"Partitions with parts separated by parity: conjugation, congruences and the mock theta functions","authors":"Shishuo Fu, Dazhao Tang","doi":"10.1017/prm.2023.119","DOIUrl":"https://doi.org/10.1017/prm.2023.119","url":null,"abstract":"Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions <jats:inline-formula> <jats:alternatives> <jats:tex-math>$omega (q)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001191_inline1.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$nu (q)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001191_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$psi ^{(3)}(q)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001191_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, introduced by Ramanujan and Watson.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":" 23","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138494449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetrized and non-symmetrizedasymptotic mean value Laplacian in metric measure spaces 度量测度空间中的对称与非对称渐近均值拉普拉斯算子
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-11-28 DOI: 10.1017/prm.2023.118
Andreas Minne, David Tewodrose
{"title":"Symmetrized and non-symmetrizedasymptotic mean value Laplacian in metric measure spaces","authors":"Andreas Minne, David Tewodrose","doi":"10.1017/prm.2023.118","DOIUrl":"https://doi.org/10.1017/prm.2023.118","url":null,"abstract":"The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052300118X_inline1.png\" /> </jats:alternatives> </jats:inline-formula> to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052300118X_inline2.png\" /> </jats:alternatives> </jats:inline-formula>—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"327 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Spaces of functions and sections with paracompact domain 具有准紧定义域的函数和节的空间
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-11-21 DOI: 10.1017/prm.2023.117
Jaka Smrekar
{"title":"Spaces of functions and sections with paracompact domain","authors":"Jaka Smrekar","doi":"10.1017/prm.2023.117","DOIUrl":"https://doi.org/10.1017/prm.2023.117","url":null,"abstract":"We study spaces of continuous functions and sections with domain a paracompact Hausdorff <jats:italic>k</jats:italic>-space <jats:inline-formula> <jats:alternatives> <jats:tex-math>$X$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline1.png\" /> </jats:alternatives> </jats:inline-formula> and range a nilpotent CW complex <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Y$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, with emphasis on localization at a set of primes. For <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathop {rm map}nolimits _phi (X,,Y)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, the space of maps with prescribed restriction <jats:inline-formula> <jats:alternatives> <jats:tex-math>$phi$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline4.png\" /> </jats:alternatives> </jats:inline-formula> on a suitable subspace <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Asubset X$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, we construct a natural spectral sequence of groups that converges to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$pi _*(mathop {rm map}nolimits _phi (X,,Y))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and allows for detection of localization on the level of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$E^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline7.png\" /> </jats:alternatives> </jats:inline-formula>. Our applications extend and unify the previously known results.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":" 24","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138494472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trend to equilibrium solution for the discrete Safronov–Dubovskiĭ aggregation equation with forcing 带强迫的离散safronov - dubovski聚集方程的平衡解趋向
IF 1.3 3区 数学
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Pub Date : 2023-11-16 DOI: 10.1017/prm.2023.116
Arijit Das, Jitraj Saha
{"title":"Trend to equilibrium solution for the discrete Safronov–Dubovskiĭ aggregation equation with forcing","authors":"Arijit Das, Jitraj Saha","doi":"10.1017/prm.2023.116","DOIUrl":"https://doi.org/10.1017/prm.2023.116","url":null,"abstract":"We consider the discrete Safronov-Dubovskiĭ aggregation equation associated with the physical condition, where particle injection and extraction take place in the dynamical system. In application, this model is used to describe the aggregation of particle-monomers in combination with sedimentation of particle-clusters. More precisely, we prove well-posedness of the considered model for a large class of aggregation kernel with source and efflux coefficients. Furthermore, over a long time period, we prove that the dynamical model attains a unique equilibrium solution with an exponential rate under a suitable condition on the forcing coefficient.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":" 25","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138494471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信