无处不在的乘法代数

IF 1.3 3区 数学 Q1 MATHEMATICS
Eduard Vilalta
{"title":"无处不在的乘法代数","authors":"Eduard Vilalta","doi":"10.1017/prm.2023.123","DOIUrl":null,"url":null,"abstract":"<p>We study sufficient conditions under which a nowhere scattered <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline1.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline2.png\"/></span></span> has a nowhere scattered multiplier algebra <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline3.png\"/></span></span>, that is, we study when <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline4.png\"/></span></span> has no nonzero, elementary ideal-quotients. In particular, we prove that a <span><span><span data-mathjax-type=\"texmath\"><span>$\\sigma$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline5.png\"/></span></span>-unital <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline6.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline7.png\"/></span></span> of</p><ol><li><p><span>(i)</span> finite nuclear dimension, or</p></li><li><p><span>(ii)</span> real rank zero, or</p></li><li><p><span>(iii)</span> stable rank one with <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline8.png\"/></span></span>-comparison,</p></li></ol> is nowhere scattered if and only if <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline9.png\"/></span></span> is.<p></p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nowhere scattered multiplier algebras\",\"authors\":\"Eduard Vilalta\",\"doi\":\"10.1017/prm.2023.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study sufficient conditions under which a nowhere scattered <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {C}^*$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline1.png\\\"/></span></span>-algebra <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$A$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline2.png\\\"/></span></span> has a nowhere scattered multiplier algebra <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {M}(A)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline3.png\\\"/></span></span>, that is, we study when <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {M}(A)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline4.png\\\"/></span></span> has no nonzero, elementary ideal-quotients. In particular, we prove that a <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sigma$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline5.png\\\"/></span></span>-unital <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {C}^*$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline6.png\\\"/></span></span>-algebra <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$A$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline7.png\\\"/></span></span> of</p><ol><li><p><span>(i)</span> finite nuclear dimension, or</p></li><li><p><span>(ii)</span> real rank zero, or</p></li><li><p><span>(iii)</span> stable rank one with <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline8.png\\\"/></span></span>-comparison,</p></li></ol> is nowhere scattered if and only if <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {M}(A)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline9.png\\\"/></span></span> is.<p></p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.123\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个无处分散的 $\mathrm {C}^*$ 代数 $A$ 具有一个无处分散的乘子代数 $\mathcal {M}(A)$ 的充分条件,也就是说,我们研究了 $\mathcal {M}(A)$ 没有非零的、基本的理想数的情况。特别是,我们证明,当且仅当 $\mathcal {M}(A)$ 是时,一个具有(i)有限核维度的 $\sigma$-unital $\mathrm {C}^*$-algebra $A$,或(ii)实秩为零,或(iii)具有 $k$ 比较的稳定秩一的 $\sigma$-unital $\mathrm {C}^*$-algebra $A$ 是无处分散的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nowhere scattered multiplier algebras

We study sufficient conditions under which a nowhere scattered $\mathrm {C}^*$-algebra $A$ has a nowhere scattered multiplier algebra $\mathcal {M}(A)$, that is, we study when $\mathcal {M}(A)$ has no nonzero, elementary ideal-quotients. In particular, we prove that a $\sigma$-unital $\mathrm {C}^*$-algebra $A$ of

  1. (i) finite nuclear dimension, or

  2. (ii) real rank zero, or

  3. (iii) stable rank one with $k$-comparison,

is nowhere scattered if and only if $\mathcal {M}(A)$ is.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信