度量测度空间中的对称与非对称渐近均值拉普拉斯算子

IF 1.3 3区 数学 Q1 MATHEMATICS
Andreas Minne, David Tewodrose
{"title":"度量测度空间中的对称与非对称渐近均值拉普拉斯算子","authors":"Andreas Minne, David Tewodrose","doi":"10.1017/prm.2023.118","DOIUrl":null,"url":null,"abstract":"The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052300118X_inline1.png\" /> </jats:alternatives> </jats:inline-formula> to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052300118X_inline2.png\" /> </jats:alternatives> </jats:inline-formula>—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"327 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symmetrized and non-symmetrizedasymptotic mean value Laplacian in metric measure spaces\",\"authors\":\"Andreas Minne, David Tewodrose\",\"doi\":\"10.1017/prm.2023.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052300118X_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052300118X_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"327 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

渐近均值Laplacian-AMV laplacian -通过平均积分的极限将拉普拉斯算子从$\mathbb {R}^n$扩展到度量度量空间。然而,一般来说,AMV拉普拉斯算子不是对称算子。因此,我们考虑了对称版本的AMV拉普拉斯算子,并将重点放在对称和非对称AMV拉普拉斯算子重合的时候。除了黎曼流形和三维接触子黎曼流形外,我们还证明了它们在一大类度量度量空间上是相同的,包括具有适当消失畸变的局部Ahlfors正则空间。此外,我们研究了$\mathbb {R}^n$的加权域的上下文,其中两个算子通常不同,并提供了这些算子的显式公式,包括权重消失的点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetrized and non-symmetrizedasymptotic mean value Laplacian in metric measure spaces
The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from $\mathbb {R}^n$ to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of $\mathbb {R}^n$ —where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信