论曲面非填充曲线的稳定换向器长度

IF 1.3 3区 数学 Q1 MATHEMATICS
Max Forester, Justin Malestein
{"title":"论曲面非填充曲线的稳定换向器长度","authors":"Max Forester, Justin Malestein","doi":"10.1017/prm.2023.121","DOIUrl":null,"url":null,"abstract":"<p>We give a new proof of rationality of stable commutator length (scl) of certain elements in surface groups: those represented by curves that do not fill the surface. Such elements always admit extremal surfaces for scl. These results also hold more generally for non-filling <span><span><span data-mathjax-type=\"texmath\"><span>$1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213131917887-0965:S030821052300121X:S030821052300121X_inline1.png\"/></span></span>–chains.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"287 1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On stable commutator length of non-filling curves in surfaces\",\"authors\":\"Max Forester, Justin Malestein\",\"doi\":\"10.1017/prm.2023.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a new proof of rationality of stable commutator length (scl) of certain elements in surface groups: those represented by curves that do not fill the surface. Such elements always admit extremal surfaces for scl. These results also hold more generally for non-filling <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213131917887-0965:S030821052300121X:S030821052300121X_inline1.png\\\"/></span></span>–chains.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"287 1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了曲面群中某些元素的稳定换向子长度(scl)的合理性的一个新的证明:这些元素由不填满曲面的曲线表示。这样的元素总是允许scl的极值面。这些结果也适用于非填充$1$链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On stable commutator length of non-filling curves in surfaces

We give a new proof of rationality of stable commutator length (scl) of certain elements in surface groups: those represented by curves that do not fill the surface. Such elements always admit extremal surfaces for scl. These results also hold more generally for non-filling $1$–chains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信