{"title":"Nowhere scattered multiplier algebras","authors":"Eduard Vilalta","doi":"10.1017/prm.2023.123","DOIUrl":null,"url":null,"abstract":"<p>We study sufficient conditions under which a nowhere scattered <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline1.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline2.png\"/></span></span> has a nowhere scattered multiplier algebra <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline3.png\"/></span></span>, that is, we study when <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline4.png\"/></span></span> has no nonzero, elementary ideal-quotients. In particular, we prove that a <span><span><span data-mathjax-type=\"texmath\"><span>$\\sigma$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline5.png\"/></span></span>-unital <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathrm {C}^*$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline6.png\"/></span></span>-algebra <span><span><span data-mathjax-type=\"texmath\"><span>$A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline7.png\"/></span></span> of</p><ol><li><p><span>(i)</span> finite nuclear dimension, or</p></li><li><p><span>(ii)</span> real rank zero, or</p></li><li><p><span>(iii)</span> stable rank one with <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline8.png\"/></span></span>-comparison,</p></li></ol> is nowhere scattered if and only if <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {M}(A)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104121729565-0175:S0308210523001233:S0308210523001233_inline9.png\"/></span></span> is.<p></p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study sufficient conditions under which a nowhere scattered $\mathrm {C}^*$-algebra $A$ has a nowhere scattered multiplier algebra $\mathcal {M}(A)$, that is, we study when $\mathcal {M}(A)$ has no nonzero, elementary ideal-quotients. In particular, we prove that a $\sigma$-unital $\mathrm {C}^*$-algebra $A$ of
(i) finite nuclear dimension, or
(ii) real rank zero, or
(iii) stable rank one with $k$-comparison,
is nowhere scattered if and only if $\mathcal {M}(A)$ is.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.