Spaces of functions and sections with paracompact domain

IF 1.3 3区 数学 Q1 MATHEMATICS
Jaka Smrekar
{"title":"Spaces of functions and sections with paracompact domain","authors":"Jaka Smrekar","doi":"10.1017/prm.2023.117","DOIUrl":null,"url":null,"abstract":"We study spaces of continuous functions and sections with domain a paracompact Hausdorff <jats:italic>k</jats:italic>-space <jats:inline-formula> <jats:alternatives> <jats:tex-math>$X$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline1.png\" /> </jats:alternatives> </jats:inline-formula> and range a nilpotent CW complex <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Y$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, with emphasis on localization at a set of primes. For <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathop {\\rm map}\\nolimits _\\phi (X,\\,Y)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, the space of maps with prescribed restriction <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\phi$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline4.png\" /> </jats:alternatives> </jats:inline-formula> on a suitable subspace <jats:inline-formula> <jats:alternatives> <jats:tex-math>$A\\subset X$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline5.png\" /> </jats:alternatives> </jats:inline-formula>, we construct a natural spectral sequence of groups that converges to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\pi _*(\\mathop {\\rm map}\\nolimits _\\phi (X,\\,Y))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline6.png\" /> </jats:alternatives> </jats:inline-formula> and allows for detection of localization on the level of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$E^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210523001178_inline7.png\" /> </jats:alternatives> </jats:inline-formula>. Our applications extend and unify the previously known results.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":" 24","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study spaces of continuous functions and sections with domain a paracompact Hausdorff k-space $X$ and range a nilpotent CW complex $Y$ , with emphasis on localization at a set of primes. For $\mathop {\rm map}\nolimits _\phi (X,\,Y)$ , the space of maps with prescribed restriction $\phi$ on a suitable subspace $A\subset X$ , we construct a natural spectral sequence of groups that converges to $\pi _*(\mathop {\rm map}\nolimits _\phi (X,\,Y))$ and allows for detection of localization on the level of $E^2$ . Our applications extend and unify the previously known results.
具有准紧定义域的函数和节的空间
我们研究了连续函数和区段的空间,其域是一个拟紧Hausdorff k空间$X$,值域是一个幂零CW复$Y$,重点研究了在一组素数上的局部化问题。对于$\mathop {\rm map}\nolimits _\phi (X,\,Y)$,在合适的子空间$A\subset X$上具有规定限制的地图空间$\phi$,我们构建了一个收敛到$\pi _*(\mathop {\rm map}\nolimits _\phi (X,\,Y))$的群的自然光谱序列,并允许在$E^2$级别上检测定位。我们的应用扩展和统一了以前已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信