Cardiovascular Engineering and Technology最新文献

筛选
英文 中文
Design and Characterisation of a Novel Z-Shaped Inductor-Based Wireless Implantable Sensor for Surveillance of Abdominal Aortic Aneurysm Post-Endovascular Repair. 用于监测血管内修复术后腹主动脉瘤的新型 Z 形电感器无线植入式传感器的设计与特性。
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-10-07 DOI: 10.1007/s13239-024-00753-y
Nuno P Silva, Bilal Amin, Eoghan Dunne, Martin O'Halloran, Adnan Elahi
{"title":"Design and Characterisation of a Novel Z-Shaped Inductor-Based Wireless Implantable Sensor for Surveillance of Abdominal Aortic Aneurysm Post-Endovascular Repair.","authors":"Nuno P Silva, Bilal Amin, Eoghan Dunne, Martin O'Halloran, Adnan Elahi","doi":"10.1007/s13239-024-00753-y","DOIUrl":"10.1007/s13239-024-00753-y","url":null,"abstract":"<p><strong>Purpose: </strong>An abdominal aortic aneurysm (AAA) is a dilation of the aorta over its normal diameter (> 3 cm). The minimally invasive treatment adopted uses a stent graft to be deployed into the aneurysm by a catheter to flow blood through it. However, this approach demands frequent monitoring using imaging modalities that involve radiation and contrast agents. Moreover, the multiple follow-ups are expensive, time-consuming, and resource-demanding for healthcare systems. This study proposes a novel wireless implantable medical sensor (WIMS) to measure the aneurysm growth after the endovascular repair.</p><p><strong>Methods: </strong>The proposed sensor is composed of a Z-shaped inductor, similar to a stent ring. The proposed design of the sensor is explored by investigating the inductance, resistance, and quality factor of different possible geometries related to a Z-shaped configuration, such as the height and number of struts. The study is conducted through a combination of numerical simulations and experimental tests, with the assessment being carried out at a frequency of 13.56 MHz.</p><p><strong>Results: </strong>The results show that a higher number of struts result in higher values of inductance and resistance. On the other hand, the increase in the number of struts decreases the quality factor of the Z-shaped inductor due to the presence of high resistance from the inductor. Moreover, it is observed that the influence of the number of struts present in the Z-shaped inductor tends to decrease for larger radii.</p><p><strong>Conclusions: </strong>The numerical and experimental evaluation concludes the ability of the proposed sensor to measure the size of the aneurysm.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"1-19"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Implemented Residual Stresses on Mechanical Responses and Behavior of the Full-Layered Murine Aortic Medial Ring: A Parametric Finite Element Study. 实施残余应力对全层小鼠主动脉内侧环的机械响应和行为的影响:参数有限元研究。
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-11-25 DOI: 10.1007/s13239-024-00759-6
Atsutaka Tamura, Koki Matsumoto
{"title":"Effects of Implemented Residual Stresses on Mechanical Responses and Behavior of the Full-Layered Murine Aortic Medial Ring: A Parametric Finite Element Study.","authors":"Atsutaka Tamura, Koki Matsumoto","doi":"10.1007/s13239-024-00759-6","DOIUrl":"10.1007/s13239-024-00759-6","url":null,"abstract":"<p><strong>Purpose: </strong>It is known that elastic laminae (ELs) in the aortic wall, especially the inner layers, are structurally buckled due to residual stresses under unpressurized conditions. Herein, we aimed to develop a realistic computational model, replicating the mechanical behavior of an aortic ring from no-load to physiological conditions by considering inherent residual stresses, which has not been widely included in conventional modeling studies.</p><p><strong>Methods: </strong>We determined specific conditions to reproduce EL buckling with a \"preferable\" residual stress distribution under no-load conditions by combining the design of experiments and multiobjective optimization. Subsequently, we applied these conditions to two ring models with distinct wall structures comprised ELs and smooth muscle layers (SMLs), and compared their mechanical responses to assess the effect of implemented residual stresses by tracking changes in stress distribution in the aortic wall and corresponding EL waviness under no-load and pressurized conditions.</p><p><strong>Results: </strong>We successfully reproduced EL buckling with a steady upward residual stress distribution that was considered \"preferable\" under no-load conditions. Furthermore, we replicated radially cut ring models that spontaneously opened in vitro, and confirmed that an SML circumferential stress distribution approached a uniform state under pressurized conditions, effectively mediating stress concentrations induced at the inner layers.</p><p><strong>Conclusions: </strong>We established a ready-to-use scheme to implement intrinsic residual stresses in the aortic wall. Our computational model of the aortic ring, reproducing realistic mechanical responses and behavior, represents a valuable tool that offers essential insights for hypertension prevention and potential new clinical applications.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"91-107"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of a Soft Robotic Left Ventricular Phantom Embedded in a Closed-Loop Cardiovascular Simulator: A Computational and Experimental Analysis. 嵌入闭环心血管模拟器的软机器人左心室模型的激活:计算与实验分析
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-10-14 DOI: 10.1007/s13239-024-00755-w
Nele Demeersseman, Maria Rocchi, Heleen Fehervary, Guillermo Fernández Collazo, Bart Meyns, Libera Fresiello, Nele Famaey
{"title":"Activation of a Soft Robotic Left Ventricular Phantom Embedded in a Closed-Loop Cardiovascular Simulator: A Computational and Experimental Analysis.","authors":"Nele Demeersseman, Maria Rocchi, Heleen Fehervary, Guillermo Fernández Collazo, Bart Meyns, Libera Fresiello, Nele Famaey","doi":"10.1007/s13239-024-00755-w","DOIUrl":"10.1007/s13239-024-00755-w","url":null,"abstract":"<p><strong>Purpose: </strong>Cardiovascular simulators are used in the preclinical testing phase of medical devices. Their reliability increases the more they resemble clinically relevant scenarios. In this study, a physiologically actuated soft robotic left ventricle (SRLV) embedded in a hybrid (in silico- in vitro) simulator of the cardiovascular system is presented, along with its experimental and computational analysis.</p><p><strong>Methods: </strong>A SRLV phantom, developed from a patient's CT scan using polyvinyl alcohol (PVA), is embedded in a hybrid cardiovascular simulator. We present an activation method in which the hydraulic pressure external ( <math> <mrow><msub><mi>P</mi> <mi>e</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> ) to the SRLV is continuously adapted to regulate the left ventricular volume ( <math> <mrow><msub><mi>V</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> ), considering the geometry and material behavior of the SRLV and the left ventricular pressure ( <math> <mrow><msub><mi>P</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> ). This activation method is verified using a finite element (FE) model of the SRLV and validated in the hybrid simulator. Different hemodynamic profiles are presented to test the flexibility of the method.</p><p><strong>Results: </strong>Both the FE model and hybrid simulator could represent the desired in silico data ( <math> <mrow><msub><mi>P</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> , <math> <mrow><msub><mi>V</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> ) with the implemented activation method, with deviations below 8.09% in the FE model and mainly < 10% errors in the hybrid simulator. Only two measurements out of 32 exceeded the 10% threshold due to simulator setup limitations.</p><p><strong>Conclusion: </strong>The activation method effectively allows to represent various pressure-volume loops, as verified numerically, and validated experimentally in the hybrid simulator. This work presents a high-fidelity platform designed to simulate cardiovascular conditions, offering a robust foundation for future testing of cardiovascular medical devices under physiological conditions.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"34-51"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights from Computational Fluid Dynamics and In Vitro Studies for Stent Protrusion in Iliac Vein: How Far Shall We Go? 计算流体力学和体外研究对髂静脉支架突出的启示:我们还能走多远?
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-11-11 DOI: 10.1007/s13239-024-00758-7
Zhenmin Fan, Jian Lu, Hao Cheng, Xia Ye, Xiaoyan Deng, Pengfei Zhao, Junjun Liu, Mingyuan Liu
{"title":"Insights from Computational Fluid Dynamics and In Vitro Studies for Stent Protrusion in Iliac Vein: How Far Shall We Go?","authors":"Zhenmin Fan, Jian Lu, Hao Cheng, Xia Ye, Xiaoyan Deng, Pengfei Zhao, Junjun Liu, Mingyuan Liu","doi":"10.1007/s13239-024-00758-7","DOIUrl":"10.1007/s13239-024-00758-7","url":null,"abstract":"<p><p>These findings provide significant implications for the enhancement of iliac vein stent implantation strategies and stent design. The prevalent use of stents for treating Iliac Vein Compression Syndrome (IVCS) has shown efficacy, yet the associated clinical adverse events, including stent restenosis and postoperative thrombosis, are significant concerns. Up to now, the mechanism how the stent implantation induces the restenosis and DVT is still unclear. Our study hypothesizes that these adverse outcomes arise from altered blood flow dynamics following stent implantation. Employing computational modeling and medical imaging, we simulated IVCS after various stenting procedures to assess their impact on venous blood flow characteristics, including wall shear stress (WSS), residence time (RRT), and oscillatory shear index (OSI). Our findings reveal that a stent protruding into the vena cava impedes blood circulation, with increased protrusion exacerbating this obstruction. This is particularly evident at the vein bifurcation, where low WSS and elevated OSI and RRT are observed. Moreover, a higher stent strut density further obstructs blood flow, deteriorating the hemodynamic environment. Consequently, stent protrusion into the vena cava can enhance the likelihood of adverse post-surgical events. These insights have profound implications for optimizing iliac vein stent implantation techniques and stent design.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"79-90"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress. 腹主动脉瘤壁应力中瘤壁和腔内血栓构成材料特性的相对影响
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-10-28 DOI: 10.1007/s13239-024-00757-8
Vivian Reyna, Niusha Fathesami, Wei Wu, Satish C Muluk, Victor De Oliveira, Ender A Finol
{"title":"On the Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress.","authors":"Vivian Reyna, Niusha Fathesami, Wei Wu, Satish C Muluk, Victor De Oliveira, Ender A Finol","doi":"10.1007/s13239-024-00757-8","DOIUrl":"10.1007/s13239-024-00757-8","url":null,"abstract":"<p><strong>Introduction: </strong>An abdominal aortic aneurysm (AAA) is a dilation localized in the infrarenal segment of the abdominal aorta that can expand continuously and rupture if left untreated. Computational methods such as finite element analysis (FEA) are widely used with in silico models to calculate biomechanical predictors of rupture risk while choosing constitutive material properties for the AAA wall and intraluminal thrombus (ILT).</p><p><strong>Methods: </strong>In the present work, we investigated the effect of different constitutive material properties for the wall and ILT on 21 idealized and 10 unruptured patient-specific AAA geometries. Three material properties were used to characterize the wall and two for the ILT, leading to six material model combinations for each AAA geometry subject to appropriate boundary conditions.</p><p><strong>Results: </strong>The results of the FEA simulations indicate significant differences in the average peak wall stress (PWS), 99th percentile wall stress (99th WS), and spatially averaged wall stress (SAWS) for all AAA geometries subject to the choice of a material model combination. Specifically, using a material model combination with a compliant ILT yielded statistically higher wall stresses compared to using a stiff ILT, irrespective of the constitutive equation used to model the AAA wall.</p><p><strong>Discussion: </strong>This work provides quantitative insight into the variability of the wall stress distributions ensuing from AAA FEA modeling due to its strong dependency on population-averaged soft tissue material characterizations. This dependency leads to uncertainty about the true biomechanical state of stress of an individual AAA and the subsequent assessment of its rupture risk.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"66-78"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study. 材料特性和壁厚对升主动脉瘤预测壁应力的影响:有限元研究
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-02-01 Epub Date: 2024-10-25 DOI: 10.1007/s13239-024-00756-9
Yu Zhu, Selene Pirola, M Yousuf Salmasi, Sumesh Sasidharan, Serena M Fisichella, Declan P O'Regan, James E Moore, Thanos Athanasiou, Xiao Yun Xu
{"title":"The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study.","authors":"Yu Zhu, Selene Pirola, M Yousuf Salmasi, Sumesh Sasidharan, Serena M Fisichella, Declan P O'Regan, James E Moore, Thanos Athanasiou, Xiao Yun Xu","doi":"10.1007/s13239-024-00756-9","DOIUrl":"10.1007/s13239-024-00756-9","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;Finite element analysis (FEA) has been used to predict wall stress in ascending thoracic aortic aneurysm (ATAA) in order to evaluate risk of dissection or rupture. Patient-specific FEA requires detailed information on ATAA geometry, loading conditions, material properties, and wall thickness. Unfortunately, measuring aortic wall thickness and mechanical properties non-invasively poses a significant challenge, necessitating the use of non-patient-specific data in most FE simulations. This study aimed to assess the impact of employing non-patient-specific material properties and wall thickness on ATAA wall stress predictions.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;FE simulations were performed on 13 ATAA geometries reconstructed from computed tomography angiography (CTA) images. Patient-specific material properties and wall thicknesses were made available from a previous study where uniaxial tensile testing was performed on tissue samples obtained from the same patients. The ATAA wall models were discretised with hexahedral elements and prestressed. For each ATAA model, FE simulations were conducted using patient-specific material properties and wall thicknesses, and group-mean values derived from all tissue samples included in the same experimental study. Literature-based material property and wall thickness were also obtained from the literature and applied to 4 representative cases. Additional FE simulations were performed on these 4 cases by employing group-mean and literature-based wall thicknesses.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;FE simulations using the group-mean material property produced peak wall stresses comparable to those obtained using patient-specific material properties, with a mean deviation of 7.8%. Peak wall stresses differed by 20.8% and 18.7% in patients with exceptionally stiff or compliant walls, respectively. Comparison to results using literature-based material properties revealed larger discrepancies, ranging from 5.4% to 28.0% (mean 20.1%). Bland-Altman analysis showed significant discrepancies in areas of high wall stress, where wall stress obtained using patient-specific and literature-based properties differed by up to 674 kPa, compared to 227 kPa between patient-specific and group-mean properties. Regarding wall thickness, using the literature-based value resulted in even larger discrepancies in predicted peak stress, ranging from 24.2% to 30.0% (mean 27.3%). Again, using the group-mean wall thickness offered better predictions with a difference less than 5% in three out of four cases. While peak wall stresses were most affected by the choice of mechanical properties or wall thickness, the overall distribution of wall stress hardly changed.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Our study demonstrated the importance of incorporating patient-specific material properties and wall thickness in FEA for risk prediction of aortic dissection or rupture. Our future efforts will focus on developing inverse ","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"52-65"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-stage Development of the CoRISMA Mechanical Circulatory Support (CMCS) System for Heart Failure Therapy. 用于心力衰竭治疗的 CoRISMA 机械循环支持(CMCS)系统的早期开发。
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-07-22 DOI: 10.1007/s13239-024-00743-0
Gretel Monreal, Steven C Koenig, James F Kelley, Jessica J Illg, Daniel Tamez, Mark S Kelley, Varun Yetukuri, Daisy P Cross, Michael E Theran, Mark S Slaughter
{"title":"Early-stage Development of the CoRISMA Mechanical Circulatory Support (CMCS) System for Heart Failure Therapy.","authors":"Gretel Monreal, Steven C Koenig, James F Kelley, Jessica J Illg, Daniel Tamez, Mark S Kelley, Varun Yetukuri, Daisy P Cross, Michael E Theran, Mark S Slaughter","doi":"10.1007/s13239-024-00743-0","DOIUrl":"10.1007/s13239-024-00743-0","url":null,"abstract":"<p><strong>Purpose: </strong>CoRISMA MCS Systems Inc (Hamden CT) is developing an innovative mechanical circulatory support system (CMCS) as a durable therapeutic option for heart failure (HF) patients. The CMCS system is comprised of an axial flow pump, non-contacting hydrodynamic bearings, and integrated DC motor designed to be fully implantable in a left atrial (LA) to aortic (Ao) configuration; this unloading strategy may be particularly beneficial for HF patients with preserved ejection fraction (HFpEF). The small (5.5 cm<sup>3</sup>), lightweight (20 g), and low power (5-7 W) device design should allow for a less invasive off-pump implant. We present early-stage engineering development and testing of the prototype CoRISMA pumps.</p><p><strong>Methods: </strong>Computational fluid dynamics (CFD) modeling was performed to evaluate flow and shear in two impeller (3 blades, 0.5 mm thickness, 8.9 mm diameter, 0.15 mm gap, polished titanium) and diffusor (5 blades, polished titanium) candidate designs. Test apparatuses were custom built to expedite development of the impeller/diffuser designs and iteratively refine the CFD models. Two candidate impeller/diffusor designs were fabricated and tested in each of the two test apparatuses (n = 4 impeller/diffuser + test fixture configurations) in static mock flow loops (hydrodynamic H-Q curves, 3.5 cP glycerol solution at 37 °C), and in dynamic mock flow loops (hemodynamics, 3.5 cP glycerol solution at 37 °C) tuned to HF conditions (mean aortic pressure 50 mmHg, central venous pressure 15 mmHg, aortic flow 3.0 L/min, and heart rate 80 bpm).</p><p><strong>Results: </strong>CFD predicted flows of 4.56 L/min and 4.82 L/min at 100 mmHg for impellers/diffusers 1 and 2, respectively. Impeller 2 required less torque to generate a 6% increase in fluidic flow, and the diffuser had a larger area of high pressure, indicative of lower friction, which likely contributed to the increased efficiency. Experimental testing for all four configurations in the static and dynamic mock loops met performance metrics as evidenced by generating 4.0-4.5 L/min flow against 70-76 mmHg pressure at 25,000 rpm and restoring hemodynamics in the dynamic mock flow loop (MAP = 80 mmHg, CVP = 0 mmHg, total flow = 5.5 L/min) from baseline simulated HF test conditions.</p><p><strong>Conclusion: </strong>These results demonstrate proof-of-concept of the early engineering design and performance of the prototype CoRISMA pumps. Engineering specifications, challenges observed, and proposed solutions for the next design iteration were identified for the continued development of an effective, reliable, and safe LA-to-Ao CMCS system for HF patients. Current design plans are underway for incorporating a wireless energy transfer system for communication and power, eliminating the need for and complications associated with an external driveline, to achieve a fully-implantable system.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"667-678"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on: "Preclinical Proof-of-Concept of a Minimally Invasive Direct Cardiac Compression Device for Pediatric Heart Support". 评论:"用于小儿心脏支持的微创直接心脏压迫装置的临床前概念验证"。
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI: 10.1007/s13239-024-00751-0
T Triwiyanto, I Putu Alit Pawana, Sari Luthfiyah
{"title":"Comments on: \"Preclinical Proof-of-Concept of a Minimally Invasive Direct Cardiac Compression Device for Pediatric Heart Support\".","authors":"T Triwiyanto, I Putu Alit Pawana, Sari Luthfiyah","doi":"10.1007/s13239-024-00751-0","DOIUrl":"10.1007/s13239-024-00751-0","url":null,"abstract":"","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"775-776"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of Single Opening&Closing and Continuous Pulsatile Flow Valve Tester. 单次开闭和连续脉动流量阀测试仪的比较研究
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-08-19 DOI: 10.1007/s13239-024-00747-w
Hao Wang, Zhiqian Lu, Zhongxi Zhou, Li Liu, Zhaoming He
{"title":"Comparative Study of Single Opening&Closing and Continuous Pulsatile Flow Valve Tester.","authors":"Hao Wang, Zhiqian Lu, Zhongxi Zhou, Li Liu, Zhaoming He","doi":"10.1007/s13239-024-00747-w","DOIUrl":"10.1007/s13239-024-00747-w","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose is to demonstrate the difference in closing volume fraction between the single opening&closing valve tester (SOCVT) and continuous pulsatile flow valve tester (CPFVT).</p><p><strong>Methods: </strong>A comparative study was conducted in four hemodynamic conditions selected from the ISO 5840 on the four mitral valve states: normal annulus, 40% annulus dilation, 60% annulus dilation, and repaired valve with a clip device in both the SOCVT and CPFVT. The closing volume fractions were compared and errors calculated in the 16 cases.</p><p><strong>Results: </strong>In the CPFVT, the flowrate waveform depends more on hemodynamic conditions rather than the valve morphology. For closing volume fractions in the two testers, twelve cases had errors between 10% and 20% and 3 cases had errors between 2.2% and 5.5%. There was no statistic difference in the closing volume fraction between the CPFVT and SOCVT for the normal annulus, 40% valve annulus dilation, 60% valve annulus dilation and repaired valves (P values = 0.44, 0.44, 0.33, and 0.08, respectively, n = 4).</p><p><strong>Conclusion: </strong>There is certain error in closing volume measurements, even if no statistic difference in closing volume measured by the SOCVT and CPFVT. The typical flow waveforms of the mitral valve may be available to standardize testing of the SOCVT to evaluate valve hemodynamics. The SOCVT may be an alternative to the valve testing.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"716-723"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer Aided Intracranial Aneurysm Treatment Based on 2D/3D Mapping, Virtual Deployment and Online Distal Marker Detection. 基于二维/三维绘图、虚拟部署和在线远端标记检测的计算机辅助颅内动脉瘤治疗。
IF 1.6 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-08-19 DOI: 10.1007/s13239-024-00745-y
Nicolas Dazeo, José Ignacio Orlando, Camila García, Romina Muñoz, Laura Obrado, Hector Fernandez, Jordi Blasco, Luis San Román, Juan M Macho, Andreas Ding, Raphael Utz, Ignacio Larrabide
{"title":"Computer Aided Intracranial Aneurysm Treatment Based on 2D/3D Mapping, Virtual Deployment and Online Distal Marker Detection.","authors":"Nicolas Dazeo, José Ignacio Orlando, Camila García, Romina Muñoz, Laura Obrado, Hector Fernandez, Jordi Blasco, Luis San Román, Juan M Macho, Andreas Ding, Raphael Utz, Ignacio Larrabide","doi":"10.1007/s13239-024-00745-y","DOIUrl":"10.1007/s13239-024-00745-y","url":null,"abstract":"<p><strong>Purpose: </strong>To introduce a computational tool for peri-interventional intracranial aneurysm treatment guidance that maps preoperative planning information from simulation onto real-time X-Ray imaging.</p><p><strong>Methods: </strong>Preoperatively, multiple flow diverter (FD) devices are simulated based on the 3D mesh of the vessel to treat, to choose the optimal size and location. In the peri-operative stage, this 3D information is aligned and mapped to the continuous 2D-X-Ray scan feed from the operating room. The current flow diverter position in the 3D model is estimated by automatically detecting the distal FD marker locations and mapping them to the treated vessel. This allows to visually assess the possible outcome of releasing the device at the current position, and compare it with the one chosen pre-operatively.</p><p><strong>Results: </strong>The full pipeline was validated using retrospectively collected biplane images from four different patients (5 3D-DSA datasets in total). The distal FD marker detector obtained an average F1-score of 0.67 ( <math><mrow><mo>±</mo> <mn>0.224</mn></mrow> </math> ) in 412 2D-X-Ray scans. After aligning 3D-DSA + 2D-X-Ray datasets, the average difference between simulated and deployed positions was 0.832 mm ( <math><mrow><mo>±</mo> <mn>0.521</mn></mrow> </math> mm). Finally, we qualitatively show that the proposed approach is able to display the current location of the FD compared to their pre-operatively planned position.</p><p><strong>Conclusions: </strong>The proposed method allows to support the FD deployment procedure by merging and presenting preoperative simulation information to the interventionists, aiding them to make more accurate and less risky decisions.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"691-703"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信