Amin Khorshid Savar, Hongrui Wang, Nuo Chen, Yunzhang Cheng
{"title":"Comparative Technological Analysis of Durability and Reliability in Axial-Flow Pump Left Ventricular Assist Devices (LVADs).","authors":"Amin Khorshid Savar, Hongrui Wang, Nuo Chen, Yunzhang Cheng","doi":"10.1007/s13239-025-00778-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study addresses the critical gap in the literature regarding the comparative analysis of axial flow left ventricular assist devices (LVADs). Despite technological advancements, there is a notable lack of integrated studies focusing solely on axial flow pumps and comparing multiple models with the same technology. This gap limits developers' access to comprehensive technical information essential for innovation in mechanical design, flow efficiency, and thrombus prevention.</p><p><strong>Method: </strong>A systematic review of 27 low-risk studies was performed on four axial flow LVADs: HeartMate II, DeBakey, Berlin Heart INCOR, and Jarvik 2000. The analysis evaluated durability and reliability using key metrics, including actuarial survival rates, device exchange rates, pump thrombosis rates, and freedom from adverse events, while considering technical factors such as rotor design, flow dynamics, and material innovation.</p><p><strong>Results: </strong>HeartMate II achieved a 79% actuarial survival rate at 1 year and a 6.3% thrombosis-related exchange rate. DeBakey had a higher exchange rate of 33.3% due to mechanical issues, indicating a need for better material durability. Jarvik 2000 offered long-term support with a 5-year duration and an 8.3% thrombosis rate, benefiting from its spiral cable design. INCOR showed high reliability with low energy consumption and minimal driveline infections, highlighting the advantages of advanced coatings and reduced friction.</p><p><strong>Conclusion: </strong>Axial flow LVADs are crucial for patients with small chest spaces, especially children. Enhancements in rotor design, materials, and real-time monitoring are essential for improving durability and reliability. These findings provide valuable insights for developing more durable and reliable axial flow pumps.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00778-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study addresses the critical gap in the literature regarding the comparative analysis of axial flow left ventricular assist devices (LVADs). Despite technological advancements, there is a notable lack of integrated studies focusing solely on axial flow pumps and comparing multiple models with the same technology. This gap limits developers' access to comprehensive technical information essential for innovation in mechanical design, flow efficiency, and thrombus prevention.
Method: A systematic review of 27 low-risk studies was performed on four axial flow LVADs: HeartMate II, DeBakey, Berlin Heart INCOR, and Jarvik 2000. The analysis evaluated durability and reliability using key metrics, including actuarial survival rates, device exchange rates, pump thrombosis rates, and freedom from adverse events, while considering technical factors such as rotor design, flow dynamics, and material innovation.
Results: HeartMate II achieved a 79% actuarial survival rate at 1 year and a 6.3% thrombosis-related exchange rate. DeBakey had a higher exchange rate of 33.3% due to mechanical issues, indicating a need for better material durability. Jarvik 2000 offered long-term support with a 5-year duration and an 8.3% thrombosis rate, benefiting from its spiral cable design. INCOR showed high reliability with low energy consumption and minimal driveline infections, highlighting the advantages of advanced coatings and reduced friction.
Conclusion: Axial flow LVADs are crucial for patients with small chest spaces, especially children. Enhancements in rotor design, materials, and real-time monitoring are essential for improving durability and reliability. These findings provide valuable insights for developing more durable and reliable axial flow pumps.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.