Binze Han, Shouming Chen, Li Liu, Liuhong Hu, Longlin Yin
{"title":"Three-Dimensional Feature Tracking Study of Healthy Chinese Ventricle by Cardiac Magnetic Resonance.","authors":"Binze Han, Shouming Chen, Li Liu, Liuhong Hu, Longlin Yin","doi":"10.1007/s13239-024-00736-z","DOIUrl":"10.1007/s13239-024-00736-z","url":null,"abstract":"<p><strong>Purpose: </strong>Myocardial strain, as a crucial quantitative indicator of myocardial deformation, can detect the changes of cardiac function earlier than parameters such as ejection fraction (EF). It has reported that cardiac magnetic resonance(CMR) and post-processing software possess the ability to obtain the stability and repeatability strain values. Recently, the normal strain values range of people are debatable, especially in the Chinese population. Therefore, we aim to explore the ventricular characteristics and the myocardial strain values of the Chinese people by using the cardiac magnetic resonance feature tracking (CMR-FT). Additionally, we attempted to use the myocardial and chordae tendineae contours to calculate the ventricular volumes by the CMR-FT. This study may provide valuable insights into the application of CMR-FT in tracking the ventricular characteristics and myocardial strain for Chinese population, especially in suggesting an referable myocardial strain parameters of the Chinese.</p><p><strong>Methods: </strong>A total of 109 healthy Chinese individuals (age range: 18 to 58 years; 52 males and 57 females) underwent 3.0T CMR to acquire the cardiac images. The commercial post-processing software was employed to analyse the image sequence by semi-automatic processing, then the biventricular morphology (End-Diastolic Volume, EDV; EDV/Body Surface Area, EDV/BSA), function(EF; Cardiac Output, CO; Cardiac Index, CI) and strain(Radial Strain, RS; Circumferential Strain, CS; Longitudinal Strain, LS) values were obtained.The biventricular myocardial strain values were stratified according to the age and gender. The Left Ventricular( LV base, mid, apex) and myocardial strain values of three coronary artery areas were calculated based on the the strain value of LV American Heart Association(AHA) 16 segments.</p><p><strong>Results: </strong>It was shown that the females had larger LV globe strain values compared with the males (LVGPRS: 42.0 ± 8.5 versus 33.6 ± 6.2%, P < 0.001; LVGPCS: -21.2 ± 2.1 versus - 19.7 ± 2.3%, P < 0.001; LVGPLS: -16.4 ± 2.6 versus - 14.6 ± 2.2%, P < 0.001;). Moreover, the differences in RS, CS, and LS among the LV myocardium 16 segments were obvious. However, the right ventricle (RV) strain values showed non-normal distribution in the volunteers of this research.</p><p><strong>Conclusions: </strong>Here, we successfully tracked the characteristics of bilateral ventricles in healthy Chinese populations through using the 3.0T CMR. We confirmed that there was a gender difference in LV Globe Strain values. In addition, we obtained strain values for each myocardial segment of the LV and different coronary artery regions based on the AHA 16 segments method, Our results also showed that the RV strain values with a non-normal distribution, and RV global strain values were not related to the gender and age. Furthermore, LVGPRS, LVGPLS, and RVGPRS were significantly correlated with BMI, CO, CI, and EDV in t","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"606-615"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samir Donmazov, Eda Nur Saruhan, Kerem Pekkan, Senol Piskin
{"title":"Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.","authors":"Samir Donmazov, Eda Nur Saruhan, Kerem Pekkan, Senol Piskin","doi":"10.1007/s13239-024-00737-y","DOIUrl":"10.1007/s13239-024-00737-y","url":null,"abstract":"<p><strong>Background and objective: </strong>Advanced material models and material characterization of soft biological tissues play an essential role in pre-surgical planning for vascular surgeries and transcatheter interventions. Recent advances in heart valve engineering, medical device and patch design are built upon these models. Furthermore, understanding vascular growth and remodeling in native and tissue-engineered vascular biomaterials, as well as designing and testing drugs on soft tissue, are crucial aspects of predictive regenerative medicine. Traditional nonlinear optimization methods and finite element (FE) simulations have served as biomaterial characterization tools combined with soft tissue mechanics and tensile testing for decades. However, results obtained through nonlinear optimization methods are reliable only to a certain extent due to mathematical limitations, and FE simulations may require substantial computing time and resources, which might not be justified for patient-specific simulations. To a significant extent, machine learning (ML) techniques have gained increasing prominence in the field of soft tissue mechanics in recent years, offering notable advantages over conventional methods. This review article presents an in-depth examination of emerging ML algorithms utilized for estimating the mechanical characteristics of soft biological tissues and biomaterials. These algorithms are employed to analyze crucial properties such as stress-strain curves and pressure-volume loops. The focus of the review is on applications in cardiovascular engineering, and the fundamental mathematical basis of each approach is also discussed.</p><p><strong>Methods: </strong>The review effort employed two strategies. First, the recent studies of major research groups actively engaged in cardiovascular soft tissue mechanics are compiled, and research papers utilizing ML and deep learning (DL) techniques were included in our review. The second strategy involved a standard keyword search across major databases. This approach provided 11 relevant ML articles, meticulously selected from reputable sources including ScienceDirect, Springer, PubMed, and Google Scholar. The selection process involved using specific keywords such as \"machine learning\" or \"deep learning\" in conjunction with \"soft biological tissues\", \"cardiovascular\", \"patient-specific,\" \"strain energy\", \"vascular\" or \"biomaterials\". Initially, a total of 25 articles were selected. However, 14 of these articles were excluded as they did not align with the criteria of focusing on biomaterials specifically employed for soft tissue repair and regeneration. As a result, the remaining 11 articles were categorized based on the ML techniques employed and the training data utilized.</p><p><strong>Results: </strong>ML techniques utilized for assessing the mechanical characteristics of soft biological tissues and biomaterials are broadly classified into two categories: standard ML algorithms an","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"522-549"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulmonary Vein Morphology in Patients Undergoing Catheter Ablation of Atrial Fibrillation.","authors":"Farkasová Barbora, Toman Ondřej, Pospíšil David, Míková Monika, Hejtmánková Nela, Zouharová Anna, Křikavová Lucie, Fiala Martin, Sepši Milan, Kala Petr, Novotný Tomáš","doi":"10.1007/s13239-024-00738-x","DOIUrl":"10.1007/s13239-024-00738-x","url":null,"abstract":"<p><strong>Purpose: </strong>Variations in the anatomy of pulmonary veins can influence selection of approaches of atrial fibrillation catheter ablation. Therefore, preprocedural evaluation and knowledge of pulmonary veins anatomy is crucial for proper mapping and the successful ablation of atrial fibrillation. The aim of this observational study was to assess CT angiography scans and perform detailed analysis of pulmonary veins morphology in patients scheduled for catheter ablation of atrial fibrillation.</p><p><strong>Methods: </strong>CT angiography was performed in 771 individuals (223 females, 548 males, mean age 58.4 ± 10.7 years). Pulmonary veins anatomy was evaluated using 3D models. The patterns used for evaluation included typical anatomy with four separate pulmonary veins, a common left ostium, and various types of accessory veins either alone or in combination with common left ostia.</p><p><strong>Results: </strong>An anatomical variant with common left ostium was observed as the most prevalent anatomy (44%). The typical variant was observed in 34.8% of patients. Accessory pulmonary veins were observed predominantly on the right side. The prevalence of anatomical variants did not differ between sexes with the exception of the unclassifiable category U (4.4% vs. 9%, p < 0.05).</p><p><strong>Conclusions: </strong>Our study shows that a considerable number of atypical anatomies is present in patients undergoing AF catheter ablation. This knowledge may influence the choice of instrumentation. The data could be possibly helpful also in development of new ablation techniques.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"616-622"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y D Motchon, K L Sack, M S Sirry, N J Nchejane, T Abdalrahman, J Nagawa, M Kruger, E Pauwels, D Van Loo, A De Muynck, L Van Hoorebeke, N H Davies, T Franz
{"title":"In silico Mechanics of Stem Cells Intramyocardially Transplanted with a Biomaterial Injectate for Treatment of Myocardial Infarction.","authors":"Y D Motchon, K L Sack, M S Sirry, N J Nchejane, T Abdalrahman, J Nagawa, M Kruger, E Pauwels, D Van Loo, A De Muynck, L Van Hoorebeke, N H Davies, T Franz","doi":"10.1007/s13239-024-00734-1","DOIUrl":"10.1007/s13239-024-00734-1","url":null,"abstract":"<p><strong>Purpose: </strong>Biomaterial and stem cell delivery are promising approaches to treating myocardial infarction. However, the mechanical and biochemical mechanisms underlying the therapeutic benefits require further clarification. This study aimed to assess the deformation of stem cells injected with the biomaterial into the infarcted heart.</p><p><strong>Methods: </strong>A microstructural finite element model of a mid-wall infarcted myocardial region was developed from ex vivo microcomputed tomography data of a rat heart with left ventricular infarct and intramyocardial biomaterial injectate. Nine cells were numerically seeded in the injectate of the microstructural model. The microstructural and a previously developed biventricular finite element model of the same rat heart were used to quantify the deformation of the cells during a cardiac cycle for a biomaterial elastic modulus (E<sub>inj</sub>) ranging between 4.1 and 405,900 kPa.</p><p><strong>Results: </strong>The transplanted cells' deformation was largest for E<sub>inj</sub> = 7.4 kPa, matching that of the cells, and decreased for an increase and decrease in E<sub>inj</sub>. The cell deformation was more sensitive to E<sub>inj</sub> changes for softer (E<sub>inj</sub> ≤ 738 kPa) than stiffer biomaterials.</p><p><strong>Conclusions: </strong>Combining the microstructural and biventricular finite element models enables quantifying micromechanics of transplanted cells in the heart. The approach offers a broader scope for in silico investigations of biomaterial and cell therapies for myocardial infarction and other cardiac pathologies.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"594-605"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osman Gültekin, Matthew J Lohr, Grace N Bechtel, Manuel K Rausch
{"title":"\"What makes blood clots break off?\" A Back-of-the-Envelope Computation Toward Explaining Clot Embolization.","authors":"Osman Gültekin, Matthew J Lohr, Grace N Bechtel, Manuel K Rausch","doi":"10.1007/s13239-024-00733-2","DOIUrl":"10.1007/s13239-024-00733-2","url":null,"abstract":"<p><strong>Purpose: </strong>One in four deaths worldwide is due to thromboembolic disease; that is, one in four people die from blood clots first forming and then breaking off or embolizing. Once broken off, clots travel downstream, where they occlude vital blood vessels such as those of the brain, heart, or lungs, leading to strokes, heart attacks, or pulmonary embolisms, respectively. Despite clots' obvious importance, much remains to be understood about clotting and clot embolization. In our work, we take a first step toward untangling the mystery behind clot embolization and try to answer the simple question: \"What makes blood clots break off?\"</p><p><strong>Methods: </strong>To this end, we conducted experimentally-informed, back-of-the-envelope computations combining fracture mechanics and phase-field modeling. We also focused on deep venous clots as our model problem.</p><p><strong>Results: </strong>Here, we show that of the three general forces that act on venous blood clots-shear stress, blood pressure, and wall stretch-induced interfacial forces-the latter may be a critical embolization force in occlusive and non-occlusive clots, while blood pressure appears to play a determinant role only for occlusive clots. Contrary to intuition and prior reports, shear stress, even when severely elevated, appears unlikely to cause embolization.</p><p><strong>Conclusion: </strong>This first approach to understanding the source of blood clot bulk fracture may be a critical starting point for understanding blood clot embolization. We hope to inspire future work that will build on ours and overcome the limitations of these back-of-the-envelope computations.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"584-593"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prateek C. Gowda, Robert M. Weinstein, Akanksha Bhargava, Janaka Senarathna, Ryan Q. Stewart, Pallavi V. Ekbote, Mantej Singh, Emily Guan, Serena Banghar, Arvind P. Pathak, Clifford R. Weiss
{"title":"Development of a High-Fidelity Benchtop Model for Simultaneous Flow, Pressure, and Imaging Assessment of Transarterial Embolization Procedures","authors":"Prateek C. Gowda, Robert M. Weinstein, Akanksha Bhargava, Janaka Senarathna, Ryan Q. Stewart, Pallavi V. Ekbote, Mantej Singh, Emily Guan, Serena Banghar, Arvind P. Pathak, Clifford R. Weiss","doi":"10.1007/s13239-024-00749-8","DOIUrl":"https://doi.org/10.1007/s13239-024-00749-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The development of new endovascular technologies for transarterial embolization has relied on animal studies to validate efficacy before clinical trials are undertaken. Because embolizations in animals and patients are primarily conducted with fluoroscopy alone, local hemodynamic changes are not assessed during testing. However, such hemodynamic metrics could be important indicators of procedure efficacy that could support improved patient outcomes, such as via the determination of procedural endpoints. The purpose of this study is to create a high-fidelity benchtop system for multiparametric (i.e., hemodynamic and imaging) assessment of transarterial embolization procedures.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The benchtop system consists of a 3D printed, anatomically accurate vascular phantom; a flow loop with a cardiac output simulator; a high-speed video camera; and pressure transducers and flow meters. This system enabled us to vary the heart rate and blood pressure and to simulate clinically relevant hemodynamic states, such as healthy adult, aortic regurgitation, and hypovolemic shock.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>With our radiation-free angiography-mimetic imaging system, we could simultaneously assess gauge pressure and flow values during transarterial embolization. We demonstrated the feasibility of recapitulating the digital subtraction angiography workflow. Finally, we highlighted the utility of this system by characterizing the relationship between an imaging-based metric of procedural endpoint and intravascular flow. We also characterized hemodynamic changes associated with particle embolization within a branch of the hepatic artery and found them to be within reported patient data.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our benchtop vascular system was low-cost and reproduced transarterial embolization-related hemodynamic phenomena with high fidelity. We believe that this novel platform enables the characterization of patient physiology, novel catheterization devices, and techniques.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":"11 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vahid Sadri, Prem A. Midha, Immanuel David Madukauwa-David, Norihiko Kamioka, Phillip M. Trusty, Priya J. Nair, Samuel Cohen, Vrishank Raghav, Rahul Sharma, Vasilis Babaliaros, Ajit P. Yoganathan
{"title":"Benchtop Flow Stasis Quantification: In Vitro Methods and In Vivo Possibilities","authors":"Vahid Sadri, Prem A. Midha, Immanuel David Madukauwa-David, Norihiko Kamioka, Phillip M. Trusty, Priya J. Nair, Samuel Cohen, Vrishank Raghav, Rahul Sharma, Vasilis Babaliaros, Ajit P. Yoganathan","doi":"10.1007/s13239-024-00750-1","DOIUrl":"https://doi.org/10.1007/s13239-024-00750-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Neo-sinus flow stasis has ben correlated with transcatheter heart valve (THV) thrombosis severity and occurrence. Standard benchtop flow field quantification techniques require optical access or modified prosthesis models that may not reflect the true nature of the original valve. <i>En face</i> and fluoroscopic videodensitometry enable visualization of washout in regions otherwise unviewable.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study compares two in vitro methods of assessing flow stasis in scenarios with insufficient optical access for traditional techniques such as particle image velocimetry (PIV). A series of seven paired experiments were conducted using a previously described laser-enhanced video densitometry (LEVD) and fluoroscopic video densitometry (FVD). Both sets of experiments were analyzed to calculate washout time as a measure of flow stasis. A novel flow stasis measure termed contrast attenuation ratio (CAR) is proposed as a viable single measure of flow stasis obtainable from only a small number of cardiac cycles of in vitro or in vivo fluoroscopic data. Retrospective fluoroscopic datasets (<i>n</i> = 72) were analyzed to assess the feasibility of obtaining this metric from routine clinical practice and its ability to stratify results.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Neo-sinus flow stasis calculated from in vitro fluoroscopy was well correlated with LEVD (r<sup>2</sup> = 0.77, <i>p</i> = 0.009). The newly proposed CAR metric showed good agreement with the commonly used “washout time” measure of flow stasis (r<sup>2</sup> = 0.91, <i>p</i> < 0.001) while allowing for assessment with incomplete or truncated data. As a proof of concept, CAR was measured in 72 consecutive retrospective fluoroscopic datasets. CAR averaged 10.6 ± 4.6% with a range of 1.5–20.3% in these patients.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study demonstrates two in vitro methods that can be used to assess relative flow stasis in otherwise optically inaccessible regions surrounding cardiac or vascular implants. In addition, the fluoroscopic benchtop technique was used to validate a metric that allows for extension to routine clinical fluoroscopy. This contrast attenuation ratio (CAR) metric was found to be both accurate and clinically obtainable, and potentially offers a new method for valve thrombosis risk stratification.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simbarashe G Chidyagwai, Michael S Kaplan, Christopher W Jensen, James S Chen, Reid C Chamberlain, Kevin D Hill, Piers C A Barker, Timothy C Slesnick, Amanda Randles
{"title":"Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure.","authors":"Simbarashe G Chidyagwai, Michael S Kaplan, Christopher W Jensen, James S Chen, Reid C Chamberlain, Kevin D Hill, Piers C A Barker, Timothy C Slesnick, Amanda Randles","doi":"10.1007/s13239-024-00724-3","DOIUrl":"10.1007/s13239-024-00724-3","url":null,"abstract":"<p><strong>Purposr: </strong>This study created 3D CFD models of the Norwood procedure for hypoplastic left heart syndrome (HLHS) using standard angiography and echocardiogram data to investigate the impact of shunt characteristics on pulmonary artery (PA) hemodynamics. Leveraging routine clinical data offers advantages such as availability and cost-effectiveness without subjecting patients to additional invasive procedures.</p><p><strong>Methods: </strong>Patient-specific geometries of the intrathoracic arteries of two Norwood patients were generated from biplane cineangiograms. \"Virtual surgery\" was then performed to simulate the hemodynamics of alternative PA shunt configurations, including shunt type (modified Blalock-Thomas-Taussig shunt (mBTTS) vs. right ventricle-to-pulmonary artery shunt (RVPAS)), shunt diameter, and pulmonary artery anastomosis angle. Left-right pulmonary flow differential, Q<sub>p</sub>/Q<sub>s</sub>, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were evaluated.</p><p><strong>Results: </strong>There was strong agreement between clinically measured data and CFD model output throughout the patient-specific models. Geometries with a RVPAS tended toward more balanced left-right pulmonary flow, lower Q<sub>p</sub>/Q<sub>s</sub>, and greater TAWSS and OSI than models with a mBTTS. For both shunt types, larger shunts resulted in a higher Q<sub>p</sub>/Q<sub>s</sub> and higher TAWSS, with minimal effect on OSI. Low TAWSS areas correlated with regions of low flow and changing the PA-shunt anastomosis angle to face toward low TAWSS regions increased TAWSS.</p><p><strong>Conclusion: </strong>Excellent correlation between clinically measured and CFD model data shows that 3D CFD models of HLHS Norwood can be developed using standard angiography and echocardiographic data. The CFD analysis also revealed consistent changes in PA TAWSS, flow differential, and OSI as a function of shunt characteristics.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"431-442"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Literature Survey for In-Vivo Reynolds and Womersley Numbers of Various Arteries and Implications for Compliant In-Vitro Modelling.","authors":"P N Williamson, P D Docherty, M Jermy, B M Steven","doi":"10.1007/s13239-024-00723-4","DOIUrl":"10.1007/s13239-024-00723-4","url":null,"abstract":"<p><strong>Purpose: </strong>In-vitro modelling can be used to investigate haemodynamics of arterial geometry and stent implants. However, in-vitro model fidelity relies on precise matching of in-vivo conditions. In pulsatile flow, velocity distribution and wall shear stress depend on compliance, and the Reynolds and Womersley numbers. However, matching such values may lead to unachievable tolerances in phantom fabrication.</p><p><strong>Methods: </strong>Published Reynolds and Womersley numbers for 14 major arteries in the human body were determined via a literature search. Preference was given to in-vivo publications but in-vitro and in-silico values were presented when in-vivo values were not found. Subsequently ascending aorta and carotid artery case studies were presented to highlight the limitations dynamic matching would apply to phantom fabrication.</p><p><strong>Results: </strong>Seven studies reported the in-vivo Reynolds and Womersley numbers for the aorta and two for the carotid artery. However, only one study each reported in-vivo numbers for the remaining ten arteries. No in-vivo data could be found for the femoral, superior mesenteric and renal arteries. Thus, information derived in-vitro and in-silico were provided instead. The ascending aorta and carotid artery models required scaling to 1.5× and 3× life-scale, respectively, to achieve dimensional tolerance restrictions. Modelling the ascending aorta with the comparatively high viscosity water/glycerine solution will lead to high pump power demands. However, all the working fluids considered could be dynamically matched with low pump demand for the carotid model.</p><p><strong>Conclusion: </strong>This paper compiles available human haemodynamic information, and highlights the paucity of information for some arteries. It also provides a method for optimal in-vitro experimental configuration.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"418-430"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kellan Roth, Wenqiang Liu, Kristen LeBar, Matt Ahern, Zhijie Wang
{"title":"Establishment of a Biaxial Testing System for Characterization of Right Ventricle Viscoelasticity Under Physiological Loadings.","authors":"Kellan Roth, Wenqiang Liu, Kristen LeBar, Matt Ahern, Zhijie Wang","doi":"10.1007/s13239-024-00722-5","DOIUrl":"10.1007/s13239-024-00722-5","url":null,"abstract":"<p><strong>Purpose: </strong>Prior studies have indicated an impact of cardiac muscle viscoelasticity on systolic and diastolic functions. However, the studies of ventricular free wall viscoelasticity, particularly for that of right ventricles (RV), are limited. Moreover, investigations on ventricular passive viscoelasticity have been restricted to large animals and there is a lack of data on rodent species. To fill this knowledge gap, this study aims to develop a biaxial tester that induces high-speed physiological deformations to characterize the passive viscoelasticity of rat RVs.</p><p><strong>Methods: </strong>The biaxial testing system was fabricated so that planar deformation of rat ventricle tissues at physiological strain rates was possible. The testing system was validated using isotropic polydimethylsiloxane (PDMS) sheets. Next, viscoelastic measurements were performed in healthy rat RV free walls by equibiaxial cyclic sinusoidal loadings and stress relaxation.</p><p><strong>Results: </strong>The biaxial tester's consistency, accuracy, and stability was confirmed from the PDMS samples measurements. Moreover, significant viscoelastic alterations of the RV were found between sub-physiological (0.1 Hz) and physiological frequencies (1-8 Hz). From hysteresis loop analysis, we found as the frequency increased, the elasticity and viscosity were increased in both directions. Interestingly, the ratio of storage energy to dissipated energy (W<sub>d</sub>/W<sub>s</sub>) remained constant at 0.1-5 Hz. We did not observe marked differences in healthy RV viscoelasticity between longitudinal and circumferential directions.</p><p><strong>Conclusion: </strong>This work provides a new experimental tool to quantify the passive, biaxial viscoelasticity of ventricle free walls in both small and large animals. The dynamic mechanical tests showed frequency-dependent elastic and viscous behaviors of healthy rat RVs. But the ratio of dissipated energy to stored energy was maintained between frequencies. These findings offer novel baseline information on the passive viscoelasticity of healthy RVs in adult rats.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"405-417"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}