A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Francesca Perico, Eleonora Salurso, Fabio Pappalardo, Michal Jaworek, Enrico Fermi, Maria Chiara Palmieri, Flavius Constantin Apostu, Riccardo Vismara, Marco Vola
{"title":"A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.","authors":"Francesca Perico, Eleonora Salurso, Fabio Pappalardo, Michal Jaworek, Enrico Fermi, Maria Chiara Palmieri, Flavius Constantin Apostu, Riccardo Vismara, Marco Vola","doi":"10.1007/s13239-025-00774-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Aortic valve stenosis (AVS) is the most common valvular disease in developed countries. Surgical or transcatheter bioprosthetic aortic valve (AV) replacement is the standard treatment for severe AVS. However, bioprostheses are prone to structural degeneration. Hence, in terms of lifetime management, there is a need for therapies that can postpone AV replacement. With the aim of fragmenting calcifications and restoring AV leaflets flexibility, a new transcatheter debridement device (TDD) exploiting ultrasound is under development. We performed an ex-vivo study on human hearts to quantify how TDD treatment affects stenotic AVs hemodynamic. Additionally, a qualitative histological analysis was performed to assess TDD's impact on AV leaflets.</p><p><strong>Methods: </strong>Three human hearts affected by AVS were characterized pre- and post-treatment in an ex-vivo beating heart simulator. To replicate physiological flowrates, a pulsatile pump was connected to the left ventricle, while a systemic impedance simulator connected to the aortic root and a reservoir connected to the left atrium closed the hydraulic circuit. Transvalvular pressure drop (ΔPsys), backflow volume, and effective orifice area (EOA) were evaluated. For histological analysis, AV leaflets sections were stained with Haematoxylin/Eosin and AlizarineRedS to highlight calcifications.</p><p><strong>Results: </strong>The treatment induced a reduction in ΔPsys in all tested samples, improving EOA, but caused an increase in backflow volume. Moreover, histology suggested AV leaflets integrity.</p><p><strong>Conclusions: </strong>The TDD procedure improved AV fluid-dynamics during systole in all tested samples, without evidence of damage to tissues. This suggests TDD could be a promising option to postpone AV replacement for patients with AVS.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00774-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Aortic valve stenosis (AVS) is the most common valvular disease in developed countries. Surgical or transcatheter bioprosthetic aortic valve (AV) replacement is the standard treatment for severe AVS. However, bioprostheses are prone to structural degeneration. Hence, in terms of lifetime management, there is a need for therapies that can postpone AV replacement. With the aim of fragmenting calcifications and restoring AV leaflets flexibility, a new transcatheter debridement device (TDD) exploiting ultrasound is under development. We performed an ex-vivo study on human hearts to quantify how TDD treatment affects stenotic AVs hemodynamic. Additionally, a qualitative histological analysis was performed to assess TDD's impact on AV leaflets.

Methods: Three human hearts affected by AVS were characterized pre- and post-treatment in an ex-vivo beating heart simulator. To replicate physiological flowrates, a pulsatile pump was connected to the left ventricle, while a systemic impedance simulator connected to the aortic root and a reservoir connected to the left atrium closed the hydraulic circuit. Transvalvular pressure drop (ΔPsys), backflow volume, and effective orifice area (EOA) were evaluated. For histological analysis, AV leaflets sections were stained with Haematoxylin/Eosin and AlizarineRedS to highlight calcifications.

Results: The treatment induced a reduction in ΔPsys in all tested samples, improving EOA, but caused an increase in backflow volume. Moreover, histology suggested AV leaflets integrity.

Conclusions: The TDD procedure improved AV fluid-dynamics during systole in all tested samples, without evidence of damage to tissues. This suggests TDD could be a promising option to postpone AV replacement for patients with AVS.

一种新的经导管装置治疗钙化性主动脉瓣狭窄:离体研究。
目的:主动脉瓣狭窄(AVS)是发达国家最常见的瓣膜疾病。手术或经导管生物假体主动脉瓣置换术是严重主动脉瓣综合征的标准治疗方法。然而,生物假体容易发生结构退化。因此,就终生管理而言,需要能够推迟房室置换术的治疗。为了粉碎钙化和恢复房室小叶的柔韧性,一种新的利用超声的经导管清创装置(TDD)正在开发中。我们对人类心脏进行了离体研究,以量化TDD治疗如何影响狭窄型房颤的血流动力学。此外,进行定性组织学分析以评估TDD对AV小叶的影响。方法:在离体心脏模拟装置中对三颗受AVS影响的心脏进行治疗前后的特征分析。为了复制生理流速,一个脉动泵连接到左心室,而一个系统阻抗模拟器连接到主动脉根部,一个连接到左心房的储液器关闭了液压回路。评估经瓣压降(ΔPsys)、回流流量和有效孔口面积(EOA)。为了进行组织学分析,用Haematoxylin/Eosin和alizarinreeds对AV小叶切片进行染色,以突出钙化。结果:处理能降低所有样品的ΔPsys,改善EOA,但导致回流量增加。组织学显示AV小叶完整。结论:TDD手术改善了所有测试样本收缩期的房室流体动力学,无组织损伤的证据。这表明TDD可能是延迟AVS患者房室置换术的有希望的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信