Pediatric Cardiovascular Multiscale Modeling using a Functional Mock-up Interface.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Ellen E Garven, Ethan Kung, Randy M Stevens, Amy L Throckmorton
{"title":"Pediatric Cardiovascular Multiscale Modeling using a Functional Mock-up Interface.","authors":"Ellen E Garven, Ethan Kung, Randy M Stevens, Amy L Throckmorton","doi":"10.1007/s13239-024-00767-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computational models of the cardiovascular system continue to increase in complexity. As more elements of the physiology are captured in multiscale models, there is a need to efficiently integrate subsystems. The objective of this study is to demonstrate the effectiveness of a coupling methodology, called functional mock-up interface (FMI), as applied to multiscale cardiovascular modeling.</p><p><strong>Methods: </strong>The multiscale model is composed of two subsystems: a computational fluid dynamics (CFD) model coupled to a lumped parameter model (LPM). The LPM is packaged using the FMI standard and imported into the CFD subsystem using an FMI co-simulation architecture. The functionality of an FMI coupling was demonstrated in a univentricular parallel circulation by means of compatible tools, including ANSYS CFX and Python. Predicted pressures and flows were evaluated in comparison with clinical data and a previously developed computational model.</p><p><strong>Results: </strong>The two models exchanged pressure and flow data between their boundaries at each timestep, demonstrating sufficient inter-subsystem communication. The models recreated pressures and flows from clinical measurements and a patient-specific model previously published.</p><p><strong>Conclusion: </strong>FMI integrated with ANSYS CFX is an effective approach for interfacing cardiovascular multiscale models as demonstrated by the presented univentricular circulatory model. FMI offers a modular approach towards tool integration and is an advantageous strategy for modeling complex systems.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":"16 2","pages":"202-210"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00767-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Computational models of the cardiovascular system continue to increase in complexity. As more elements of the physiology are captured in multiscale models, there is a need to efficiently integrate subsystems. The objective of this study is to demonstrate the effectiveness of a coupling methodology, called functional mock-up interface (FMI), as applied to multiscale cardiovascular modeling.

Methods: The multiscale model is composed of two subsystems: a computational fluid dynamics (CFD) model coupled to a lumped parameter model (LPM). The LPM is packaged using the FMI standard and imported into the CFD subsystem using an FMI co-simulation architecture. The functionality of an FMI coupling was demonstrated in a univentricular parallel circulation by means of compatible tools, including ANSYS CFX and Python. Predicted pressures and flows were evaluated in comparison with clinical data and a previously developed computational model.

Results: The two models exchanged pressure and flow data between their boundaries at each timestep, demonstrating sufficient inter-subsystem communication. The models recreated pressures and flows from clinical measurements and a patient-specific model previously published.

Conclusion: FMI integrated with ANSYS CFX is an effective approach for interfacing cardiovascular multiscale models as demonstrated by the presented univentricular circulatory model. FMI offers a modular approach towards tool integration and is an advantageous strategy for modeling complex systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信