{"title":"Multi-orbital topolectrical circuit for topological quantum states","authors":"Junjie Yao, Xiamin Hao, Biyu Song, Yizhen Jia, C. Hua, Miao Zhou","doi":"10.1088/2399-1984/ac5cd2","DOIUrl":"https://doi.org/10.1088/2399-1984/ac5cd2","url":null,"abstract":"Remarkable progress has been made in using electric circuits as a powerful platform to realize a plethora of exotic topological quantum states, even of higher orders and/or dimensions. So far the proposed circuits are restricted to a single-orbital tight-binding model with different lattices. Here, we introduce the concept of a multi-orbital topolectrical circuit and construct practical LC circuits to demonstrate its superiorities. As a proof of concept, we assemble two sets of inductors in one plaquette to simulate a (px, py )-orbital model within a two-dimensional hexagonal lattice. In the presence of spin–orbit coupling, as generated by mixing voltage degrees of freedom, a quantum spin Hall (QSH) state emerges with spin-resolved edge modes propagating along the boundary in the time domain. Implementation of negative impedance converters (NICs) with nonreciprocal links transforms the circuit into a quantum anomalous Hall (QAH) state. Remarkably, we demonstrate that QSH/QAH states can be reversibly switched by tuning the resistance of NIC, and an experimental observable-edge distance ratio is proposed to facilitate the phase transition detection. This work provides an exciting playground for exploring multi-orbital physics in topolectrical circuits, paving the way for future applications in nanoelectronics, telecommunications, signal processing and quantum computing.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48498805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2022-02-23DOI: 10.1088/2399-1984/ac57bc
Yi Wei, Qian Zhao, Hongwen Zhang, Le Zhou, W. Cai
{"title":"Fabrication of Pt–Ag–Au heterogeneous truncated hollow sub-microspheres for chemically self-propelled colloidal motors","authors":"Yi Wei, Qian Zhao, Hongwen Zhang, Le Zhou, W. Cai","doi":"10.1088/2399-1984/ac57bc","DOIUrl":"https://doi.org/10.1088/2399-1984/ac57bc","url":null,"abstract":"Colloidal motors with cavity structure, which have advantages over solid motors in catalytic efficiency, cargo capacity and biocompatibility, are still expected. Here, we design and fabricate a type of truncated hollow sub-microsphere via organic colloidal template etching/heating and layer-by-layer isotropic deposition. The as-prepared truncated hollow sphere is of one circular open pore through the shell layer and built of Pt, Ag and Au shell layers from inside to outside. They are controllable in sphere diameter, circular open pore size and shell thickness, which depend on the template and deposition conditions. Further experiments have shown that the Ag sandwich layer and post-deposition ageing process are crucial to obtaining strong and complete truncated hollow sub-microspheres. Their formation is attributed to the template geometry and nearly isotropic deposition. Due to the catalytic Pt layer on the inner surface and the truncated hollow spherical structure, such Pt–Ag–Au hollow spheres are demonstrated to be chemically propelled colloidal motors, which can directionally move in H2O2-containing solutions. This study presents a controllable route for mass-fabricating heterogeneous multi-layer truncated hollow sub-microspheres, and provides a new type of chemically self-propelled colloidal motor.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45524554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2022-02-23DOI: 10.1088/2399-1984/ac57f7
Sreehari Sreekumar, Nihilkumar Shah, J. Mondol, N. Hewitt, Supriya Chakrabarti
{"title":"Broadband absorbing mono, blended and hybrid nanofluids for direct absorption solar collector: a comprehensive review","authors":"Sreehari Sreekumar, Nihilkumar Shah, J. Mondol, N. Hewitt, Supriya Chakrabarti","doi":"10.1088/2399-1984/ac57f7","DOIUrl":"https://doi.org/10.1088/2399-1984/ac57f7","url":null,"abstract":"The evolution of nanofluids over the years has opened new research opportunities in the field of renewable energy. Research on the optical properties of nanofluids for application in direct absorption solar collectors (DASCs) is progressing at a burgeoning speed. In a DASC system, nanofluid with high optical absorptivity can convert the incident solar energy into the thermal energy of the fluid. The dispersed nanoparticles in the fluid act in the process through the phenomenon of absorption and scattering. Studies conducted on the optical property characterization of monocomponent nanofluids have become saturated. Moreover, the photothermal efficiency (PTE) of the nanofluid can be enhanced by using multicomponent nanofluids. Nanofluids prepared using varying materials, shapes and sizes of nanoparticles can tune the absorption spectra of the bulk fluid to improve the PTE. A hybrid nanocomposite can similarly enhance the absorptivity due to the synergy of materials present in the nanocomposite particle. In this review, a comprehensive survey on the synthesis and optical characterization of different monocomponent, blended and hybrid nanocomposite nanofluids has been performed.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45536706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2022-01-26DOI: 10.1088/2399-1984/ac4f2a
Yuting Wang, Zemin Zhang, Mingxue Li
{"title":"One-pot synthesis of 1T MoS2/MWCNT hybrids for enhanced zinc-ion storage","authors":"Yuting Wang, Zemin Zhang, Mingxue Li","doi":"10.1088/2399-1984/ac4f2a","DOIUrl":"https://doi.org/10.1088/2399-1984/ac4f2a","url":null,"abstract":"Two-dimensional transition metal dichalcogenides are regarded as the ideal hosts for zinc-ions. Herein, a facile hydrothermal method is proposed to fabricate the metallic phase (1T phase) MoS2/multi-walled carbon nanotube (MWCNT) hybrids serving as the cathode materials for zinc-ion batteries (ZIBs). By virtue of the exertion of phase engineering and the synergy between the 1T MoS2 nanosheets and MWCNT framework, the transfer kinetics of zinc-ions of the prepared hybrid are remarkably accelerated, leading to boosted electrochemical properties at both room temperature and low temperatures. The hybrid electrode delivers a high reversible capacity of 161.5 mAh g−1 after 100 cycles at 0.1 A g−1, and good cycling stability with a desired capacity retention of 84.6% over 500 cycles at 1 A g−1. Furthermore, its boosted capability of zinc-ion storage in a low-temperature atmosphere is revealed. This work not only provides an effective way to squeeze the values of phase engineering of MoS2 in ZIBs, but also reveals the great potential of MoS2-based composites in low-temperature energy storage devices.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49618569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2022-01-24DOI: 10.1088/2399-1984/ac4e77
K. Boldt
{"title":"Raman spectroscopy of colloidal semiconductor nanocrystals","authors":"K. Boldt","doi":"10.1088/2399-1984/ac4e77","DOIUrl":"https://doi.org/10.1088/2399-1984/ac4e77","url":null,"abstract":"Raman spectroscopy is a powerful method that gives insight into the atomic structure and composition of nanomaterials, but also allows to draw conclusions about their electronic properties. It is based on the inelastic scattering of light, which is able to excite phonons in the material. In the field of semiconductor nanocrystals, Raman spectroscopy has been employed to make significant contributions to the analysis of lattice distortion, interfaces, phase mixing, and defect formation. Yet, there is no clear consensus on how the electronic and crystal structure of the material interacts with the incident light to yield the observed spectra. This review gives a brief overview over the method. It then reviews the most important findings, current developments, and discusses the efforts to formulate a consistent model that allows to establish the method as a tool for structural analysis.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47530025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2022-01-11DOI: 10.1088/2399-1984/ac4a27
O. Konevtsova, D. Roshal, S. Rochal
{"title":"Moiré patterns and carbon nanotube sorting","authors":"O. Konevtsova, D. Roshal, S. Rochal","doi":"10.1088/2399-1984/ac4a27","DOIUrl":"https://doi.org/10.1088/2399-1984/ac4a27","url":null,"abstract":"Moiré patterns (MPs), arising from the superposition of two lattices with close periods, are tightly related to the physicochemical properties of bilayer nanostructures. Here, we develop the theory of complex MPs emerging in twisted bilayer graphene and planar nets of double-walled nanotubes at significant relative twist and/or deformation of layers. The proposed theory clarifies the physicochemical regularities arising at sorting of single-walled carbon nanotubes (SWCNTs) by organic molecules, which self-assemble in regular coatings on both the tubes and planar graphene. We introduce and consider an outer tubular virtual lattice that is a parent structure for the deposited coating and due to this fact, its existence is crucial for the coating formation. As we show, such outer lattices exist only for successfully sorted SWCNTs and the superposition between the outer lattice and SWCNT forms a specific long-period MP. We explain known experimental results of SWCNT sorting by molecules of flavin group, poly(9,9-dioctylfluorene-2,7-diyl), and poly [(m-phenylenevinylene)-alt-(p-phenylenevinylene)]. Also, our approach points out other organic molecules and polymers suitable for effective carbon nanotube sorting.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45710646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2021-12-17DOI: 10.1088/2399-1984/ac446c
F. A. Jan, Wajidullah, R. Ullah, Salman, N. Ullah, A. Salam
{"title":"An investigation into the environmental and therapeutic applications of holmium-doped titanium dioxide (Ho-TiO2) nanocatalysts: a kinetic and thermodynamic study of the photocatalytic degradation of Safranin O dye","authors":"F. A. Jan, Wajidullah, R. Ullah, Salman, N. Ullah, A. Salam","doi":"10.1088/2399-1984/ac446c","DOIUrl":"https://doi.org/10.1088/2399-1984/ac446c","url":null,"abstract":"Titanium dioxide (TiO2) and holmium-doped titanium dioxide (Ho-TiO2) nanoparticles(NPs) were synthesized through a sol gel route. The synthesized NPs were characterized by ultraviolet-visible (UV–Vis) spectroscopy, x-ray diffraction (XRD), energy dispersive x-ray analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and photoluminescence (PL) spectroscopy. DNA binding, antibacterial, hemolysis, and antioxidant assays of the synthesized NPs were also carried out in order to find their therapeutic applications. Successful doping of TiO2 with Ho reduced the bandgap from 3.10 to 2.88 eV. SEM and XRD analysis showed that both TiO2 and Ho-TiO2 NPs exhibit a tetragonal structure and the morphology of the particles improved and agglomeration reduced as a result of doping. The PL emission intensity of TiO2 also reduced with doping. The degradation of Safranin O dye over both the catalysts followed first-order kinetics. The calculated activation energy for the photodegradation of the given dye was found to be 51.7 and 35.2 KJ mol−1 for bare TiO2 and Ho-TiO2 NPs, respectively. After 180 min, 84% and 87% dye degradation was observed using pure TiO2 and Ho-TiO2, respectively. A high percent of degradation of the dye was found at a low concentration (20 ppm) and at optimal dosage (0.035 g) of both the catalysts. The rate of Safranin O dye degradation was found to increase with an increase in temperature and pH of the medium. A DNA binding study revealed that Ho-TiO2 NPs are more capable of binding to human DNA. An antibacterial activity study showed that Ho-TiO2 NPs were more efficient against both gram-negative and gram-positive bacterial strains compared to pure TiO2. Hemolysis assay showed that TiO2 and Ho-TiO2 NPs are non-biocompatible. Ho-TiO2 NPs showed higher anti-oxidant activity compared to bare TiO2.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2021-12-10DOI: 10.1088/2399-1984/ac421c
Huiwen Chen, Yunlong Li, Bo Zhao, Jun Ming, D. Xue
{"title":"Nanocrystals of metal halide perovskites and their analogues as scintillators for x-ray detection","authors":"Huiwen Chen, Yunlong Li, Bo Zhao, Jun Ming, D. Xue","doi":"10.1088/2399-1984/ac421c","DOIUrl":"https://doi.org/10.1088/2399-1984/ac421c","url":null,"abstract":"Scintillators are widely used for x-ray detection in various fields, such as medical diagnostics, industrial inspection and homeland security. Nanocrystals (NCs) of metal halide perovskites (MHPs) and their analogues showed great advantages as x-ray scintillators due to their cheap manufacturing, fast decay time, and room temperature scintillation from quantum confinement effect. However, there are still many challenges unsolved for further industrialization. Herein, it is necessary to summarize the progress of scintillators based on NCs of MHPs and their analogues. In the first section, the scintillation mechanism and key parameters are outlined. Then, various NCs of MHPs and their analogues used as scintillators are reviewed. Finally, the challenges and outlook are discussed. It is believed that NCs of MHPs and their analogues are favorable for large-area and flexible x-ray detectors.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49113038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2021-12-01DOI: 10.1088/2399-1984/ac279b
K. Samrat, M. Chandraprabha, R. Hari Krishna, R. Sharath, B. Harish
{"title":"Biogenic synthesis of nano-sulfur using Punica granatum fruit peel extract with enhanced antimicrobial activities for accelerating wound healing","authors":"K. Samrat, M. Chandraprabha, R. Hari Krishna, R. Sharath, B. Harish","doi":"10.1088/2399-1984/ac279b","DOIUrl":"https://doi.org/10.1088/2399-1984/ac279b","url":null,"abstract":"Microbial wound infections leading to secondary complications in wound healing has resulted in high demand for therapeutic drugs with improved efficacy. Despite achieving enhanced bio-activity and higher bioavailability compared to its bulk form, nano-sulfur (SNP) has been explored to a very limited extent for wound healing applications. In this work, we prepare biogenic SNP (SNP-B) via simple biogenic technique using pomegranate (Punica granatum) peel extract and demonstrate its antimicrobial and wound healing activity. The SNP-B was characterized using powder x-ray diffractometer, FESEM, transmission electron microscopy and Raman spectroscopy. Different wound models (excision, incision, dead space and burn) were used to assess the wound healing potential of SNP-B. The 2% (w/w) SNP-B treated group exhibited enhanced wound contraction rate (excision wound, 99.62 ± 0.59%; burn wound, 99.46 ± 0.59%), breaking strength (393.2 ± 10.87 g cm−2), and granulation tissue weight (166.8 ± 9.45 mg) compared to the control group (excision wound, 84.24 ± 2.78%; burn wound, 90.58 ± 3.2%; breaking strength, 241.3 ± 16.11 g cm−2; granulation tissue weight, 91.17 ± 7.28 mg). The efficacy of 2% (w/w) SNP-B was comparable to that of standard (5% w/w povidone-iodine ointment) in all the wound models analyzed. The SNP-B showed enhanced antibacterial activity with a MIC value of 90, 80, 80, and 60 μg ml−1 for Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus, respectively. The results obtained prove the potential of SNP-B as a multifunctional therapeutic agent for topical applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44367413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano FuturesPub Date : 2021-12-01DOI: 10.1088/2399-1984/ac421d
K. Murata, S. Yagi, Takashi Kanazawa, S. Tsubomatsu, C. Kirkham, K. Nittoh, D. Bowler, K. Miki
{"title":"Activation of two dopants, Bi and Er in δ-doped layer in Si crystal","authors":"K. Murata, S. Yagi, Takashi Kanazawa, S. Tsubomatsu, C. Kirkham, K. Nittoh, D. Bowler, K. Miki","doi":"10.1088/2399-1984/ac421d","DOIUrl":"https://doi.org/10.1088/2399-1984/ac421d","url":null,"abstract":"Conventional doping processes are no longer viable for realizing extreme structures, such as a δ-doped layer with multiple elements, such as the heavy Bi, within the silicon crystal. Here, we demonstrate the formation of (Bi + Er)-δ-doped layer based on surface nanostructures, i.e. Bi nanolines, as the dopant source by molecular beam epitaxy. The concentration of both Er and Bi dopants is controlled by adjusting the amount of deposited Er atoms, the growth temperature during Si capping and surfactant techniques. Subsequent post-annealing processing is essential in this doping technique to obtain activated dopants in the δ-doped layer. Electric transport measurement and photoluminescence study revealed that both Bi and Er dopants were activated after post-annealing at moderate temperature.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46133403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}