{"title":"胶体半导体纳米晶体的拉曼光谱","authors":"K. Boldt","doi":"10.1088/2399-1984/ac4e77","DOIUrl":null,"url":null,"abstract":"Raman spectroscopy is a powerful method that gives insight into the atomic structure and composition of nanomaterials, but also allows to draw conclusions about their electronic properties. It is based on the inelastic scattering of light, which is able to excite phonons in the material. In the field of semiconductor nanocrystals, Raman spectroscopy has been employed to make significant contributions to the analysis of lattice distortion, interfaces, phase mixing, and defect formation. Yet, there is no clear consensus on how the electronic and crystal structure of the material interacts with the incident light to yield the observed spectra. This review gives a brief overview over the method. It then reviews the most important findings, current developments, and discusses the efforts to formulate a consistent model that allows to establish the method as a tool for structural analysis.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Raman spectroscopy of colloidal semiconductor nanocrystals\",\"authors\":\"K. Boldt\",\"doi\":\"10.1088/2399-1984/ac4e77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raman spectroscopy is a powerful method that gives insight into the atomic structure and composition of nanomaterials, but also allows to draw conclusions about their electronic properties. It is based on the inelastic scattering of light, which is able to excite phonons in the material. In the field of semiconductor nanocrystals, Raman spectroscopy has been employed to make significant contributions to the analysis of lattice distortion, interfaces, phase mixing, and defect formation. Yet, there is no clear consensus on how the electronic and crystal structure of the material interacts with the incident light to yield the observed spectra. This review gives a brief overview over the method. It then reviews the most important findings, current developments, and discusses the efforts to formulate a consistent model that allows to establish the method as a tool for structural analysis.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/ac4e77\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac4e77","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Raman spectroscopy of colloidal semiconductor nanocrystals
Raman spectroscopy is a powerful method that gives insight into the atomic structure and composition of nanomaterials, but also allows to draw conclusions about their electronic properties. It is based on the inelastic scattering of light, which is able to excite phonons in the material. In the field of semiconductor nanocrystals, Raman spectroscopy has been employed to make significant contributions to the analysis of lattice distortion, interfaces, phase mixing, and defect formation. Yet, there is no clear consensus on how the electronic and crystal structure of the material interacts with the incident light to yield the observed spectra. This review gives a brief overview over the method. It then reviews the most important findings, current developments, and discusses the efforts to formulate a consistent model that allows to establish the method as a tool for structural analysis.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.