Environmental Chemistry Letters最新文献

筛选
英文 中文
Correction to: ‘Environmental applications of carbon-based materials: a review’ 更正:“碳基材料的环境应用:综述”
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-12-11 DOI: 10.1007/s10311-024-01804-5
Kannapan Panchamoorthy Gopinath, Dai‑Viet N. Vo, Dhakshinamoorthy Gnana Prakash, Antonysamy Adithya Joseph, Samynaathan Viswanathan, Jayaseelan Arun
{"title":"Correction to: ‘Environmental applications of carbon-based materials: a review’","authors":"Kannapan Panchamoorthy Gopinath, Dai‑Viet N. Vo, Dhakshinamoorthy Gnana Prakash, Antonysamy Adithya Joseph, Samynaathan Viswanathan, Jayaseelan Arun","doi":"10.1007/s10311-024-01804-5","DOIUrl":"10.1007/s10311-024-01804-5","url":null,"abstract":"","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"361 - 361"},"PeriodicalIF":15.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting records of global-to-regional climate 连接全球和区域气候的记录
IF 15.7 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-12-09 DOI: 10.1007/s10311-024-01800-9
John P. Jasper, Eric Lichtfouse
{"title":"Connecting records of global-to-regional climate","authors":"John P. Jasper, Eric Lichtfouse","doi":"10.1007/s10311-024-01800-9","DOIUrl":"https://doi.org/10.1007/s10311-024-01800-9","url":null,"abstract":"","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"200 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular deep eutectic solvents in extraction processes: a review 萃取工艺中的超分子深共晶溶剂:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-23 DOI: 10.1007/s10311-024-01795-3
Patrycja Makoś-Chełstowska, Edyta Słupek, Sophie Fourmentin, Jacek Gębicki
{"title":"Supramolecular deep eutectic solvents in extraction processes: a review","authors":"Patrycja Makoś-Chełstowska,&nbsp;Edyta Słupek,&nbsp;Sophie Fourmentin,&nbsp;Jacek Gębicki","doi":"10.1007/s10311-024-01795-3","DOIUrl":"10.1007/s10311-024-01795-3","url":null,"abstract":"<div><p>Solvent selection is essential for industrial and analytical extraction processes to ensure environmental safety and neutrality. Nevertheless, toxic and hazardous solvents are often used, due to their cost-effectiveness and ready availability. In green chemistry, alternative solvents such as supramolecular deep eutectic solvents are gaining attention due to their superior performance compared with traditional non-green solvents in certain applications. Here we review the use of supramolecular deep eutectic solvents as a green solvent for analytical and industrial liquid–liquid extraction processes, with focus on physicochemical properties, extraction conditions, the capacity factor, the enrichment factor, fuel desulfurization, extraction of biological active compounds, lignin valorization, and sample preparation.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"41 - 65"},"PeriodicalIF":15.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01795-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-modified biochar for enhanced removal of ciprofloxacin and amoxicillin in wastewater 铁改性生物炭用于提高废水中环丙沙星和阿莫西林的去除率
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-10 DOI: 10.1007/s10311-024-01792-6
Sumita, Yong Wang, Jianping Yu, Cong Li
{"title":"Iron-modified biochar for enhanced removal of ciprofloxacin and amoxicillin in wastewater","authors":"Sumita,&nbsp;Yong Wang,&nbsp;Jianping Yu,&nbsp;Cong Li","doi":"10.1007/s10311-024-01792-6","DOIUrl":"10.1007/s10311-024-01792-6","url":null,"abstract":"<div><p>Antibiotic contamination in wastewater is an urgent environmental and public health concern because conventional treatment methods are ineffective in completely removing these pollutants. Iron-modified biochar, synthesized from agricultural waste, is proposed as an efficient and sustainable media for removal of ciprofloxacin and amoxicillin from wastewater. Iron-modified biochar was synthesized using a simple pyrolysis process with corn and ferrous sulfate as feedstock. Adsorbents were characterized by fourier transform infrared spectroscopy, X-Ray diffraction, and scanning electron microscopy. Removal performance of antibiotics was evaluated under different conditions, including antibiotic dosage, concentration of hydrogen peroxide, pH, and amount of humic acid. The results demonstrated high removal efficiencies of 87% for ciprofloxacin and 83% for amoxicillin within 25 min. Mechanistic studies revealed the generation of hydroxyl radicals (<sup>•</sup>OH) and singlet oxygen (<sup>1</sup>O₂), and confirmed the activation of hydrogen peroxide in the system. These findings highlight the potential of iron-modified biochar as a sustainable and effective catalyst for antibiotic removal, offering a promising solution for reducing pharmaceutical contamination in wastewater.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"27 - 32"},"PeriodicalIF":15.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal liquefaction for producing liquid fuels and chemicals from biomass-derived platform compounds: a review 水热液化法利用生物质衍生平台化合物生产液体燃料和化学品:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-10 DOI: 10.1007/s10311-024-01791-7
Bingbing Qiu, Xuedong Tao, Yanfang Wang, Donghui Zhang, Huaqiang Chu
{"title":"Hydrothermal liquefaction for producing liquid fuels and chemicals from biomass-derived platform compounds: a review","authors":"Bingbing Qiu,&nbsp;Xuedong Tao,&nbsp;Yanfang Wang,&nbsp;Donghui Zhang,&nbsp;Huaqiang Chu","doi":"10.1007/s10311-024-01791-7","DOIUrl":"10.1007/s10311-024-01791-7","url":null,"abstract":"<div><p>Biomass offers a promising alternative for producing biofuels and chemicals through hydrothermal liquefaction, a process known for its ability to convert complex organic materials into valuable liquid products. Optimizing hydrothermal liquefaction for large-scale application involves understanding the underlying mechanisms and addressing key scientific and technical issues. We review hydrothermal liquefaction of biomass-derived chemicals, focusing on the breakdown and depolymerization of cellulose, hemicellulose, lignin, lipids, and proteins under hydrothermal conditions. We examine critical parameters such as reaction temperature, pressure, solvent selection, and catalyst choice, and their impact on product yield and quality. Catalytic routes transform key intermediates, such as 5-hydroxymethylfurfural and levulinic acid, into high-value liquid fuels and chemicals, offering significant potential for sustainable fuel production. Recent advances in process optimization are discussed.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"81 - 115"},"PeriodicalIF":15.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene oxide composites for dye removal in textile, printing and dyeing wastewaters: a review 氧化石墨烯复合材料在纺织印染废水中除染的研究进展
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-08 DOI: 10.1007/s10311-024-01794-4
Haodong Ma, Lingjie Yu, Limeng Yang, Yijun Yao, Guodong Shen, Yongzhen Wang, Bo Li, Jiaguang Meng, Menghe Miao, Chao Zhi
{"title":"Graphene oxide composites for dye removal in textile, printing and dyeing wastewaters: a review","authors":"Haodong Ma,&nbsp;Lingjie Yu,&nbsp;Limeng Yang,&nbsp;Yijun Yao,&nbsp;Guodong Shen,&nbsp;Yongzhen Wang,&nbsp;Bo Li,&nbsp;Jiaguang Meng,&nbsp;Menghe Miao,&nbsp;Chao Zhi","doi":"10.1007/s10311-024-01794-4","DOIUrl":"10.1007/s10311-024-01794-4","url":null,"abstract":"<div><p>The textile, printing and dyeing industries are producing wastewater containing hazardous dye contaminants, which require advanced remediation methods to avoid environmental pollution. Here we review graphene oxide-based materials for the removal of dye contaminants in waters and wastewater, with focus on the properties of graphene oxide, adsorption mechanisms, factors controlling the adsorption, and applications. Dye adsorption is controlled by temperature, adsorbent and dye concentrations, and adsorption time. Graphene oxide composites include membranes and aerogels. Graphene oxide displays suitable hydrophilicity, acid‐alkali resistance, and strong adsorption capabilities. Increasing the surface activity and specific surface area of graphene oxide promotes the adsorption of graphene oxide on textile wastewater and dyeing wastewater.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"165 - 193"},"PeriodicalIF":15.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possible formation of long-lived photo-oxidants by photolysis of organic matter phenols in sunlit waters 日照水域中有机物酚类的光解可能形成长寿命光氧化物
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-05 DOI: 10.1007/s10311-024-01786-4
Marcello Brigante, Davide Vione
{"title":"Possible formation of long-lived photo-oxidants by photolysis of organic matter phenols in sunlit waters","authors":"Marcello Brigante,&nbsp;Davide Vione","doi":"10.1007/s10311-024-01786-4","DOIUrl":"10.1007/s10311-024-01786-4","url":null,"abstract":"<div><p>Photodegradation in sunlit waters is a major process of contaminant abatement, yet underlying chemical processes in the presence of dissolved organic matter are poorly known. Long-lived photo-oxidants are reactive species formed when the chromophoric dissolved organic matter absorbs sunlight, and they are involved in the degradation of contaminants. Previous works identified long-lived photo-oxidants with phenoxy radicals, which could be formed upon oxidation of natural phenols by the excited triplet states of chromophoric dissolved organic matter. Here, we generated reactive phenoxy radicals by direct ultraviolet-A photolysis of 2-nitrophenol and 4-nitrophenol. We measured the second-order rate constants for reaction of these phenoxy radicals with 2,4,6-trimethylphenol, a model electron-rich phenol. Results show rate constants of 9.39 × 10<sup>8</sup>(M<sup>−1</sup>s<sup>−1</sup>) for the 2-nitrophenoxyl radical, and 1.56 × 10<sup>8</sup>(M<sup>−1</sup>s<sup>−1</sup>) for the 4-nitrophenoxyl radical. These values are slightly lower than the typical rate constant of the reaction between 2,4,6-trimethylphenol and the excited triplet states of chromophoric dissolved organic matter, of 3 × 10<sup>9</sup>(M<sup>−1</sup>s<sup>−1</sup>). This means that 2,4,6-trimethylphenol would not be degraded to comparable extents by the excited triplet states of chromophoric dissolved organic matter and by long-lived photo-oxidants, if long-lived photo-oxidants were generated solely by the triplet states of chromophoric dissolved organic matter. Overall, findings suggest the occurrence of new pathway involving the direct photolysis of organic matter phenols that generates long-lived photo-oxidants.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"21 - 26"},"PeriodicalIF":15.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01786-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics alter crystal growth in coral skeleton structures 微塑料改变了珊瑚骨骼结构中的晶体生长
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-11-01 DOI: 10.1007/s10311-024-01790-8
Pei-Ying Lin, Shu-Ling Hsieh, De-Sing Ding, Chen-Tung Arthur Chen, David E. Beck, Shuchen Hsieh
{"title":"Microplastics alter crystal growth in coral skeleton structures","authors":"Pei-Ying Lin,&nbsp;Shu-Ling Hsieh,&nbsp;De-Sing Ding,&nbsp;Chen-Tung Arthur Chen,&nbsp;David E. Beck,&nbsp;Shuchen Hsieh","doi":"10.1007/s10311-024-01790-8","DOIUrl":"10.1007/s10311-024-01790-8","url":null,"abstract":"<div><p>Microplastics have emerged as a global environmental issue, inducing harmful effects on marine ecosystems and biodiversity. Their small size allows them to easily disperse across different ecosystems and enter the marine food chain, increasingly threatening coral ecosystems. This study hypothesizes that exposure to polyethylene microplastics alters the structure of coral skeletons. To test this, <i>Briareum violacea</i> corals were cultured under controlled conditions and exposed to polyethylene microplastics at concentrations of 0, 5, 10, 50, 100, and 300 mg/L for seven days. Skeletal structures were analyzed using X-ray diffraction, while inductively coupled plasma mass spectrometry was employed to assess changes in skeletal solubility and measure total calcium ion concentrations in seawater. The results revealed a transformation of coral skeletons from aragonite calcium carbonate crystals to amorphous calcium carbonate, as observed through X-ray diffraction analysis, with polyethylene microplastics causing this transformation to begin at a concentration of 10 mg/L. Additionally, skeletal solubility increased by 7.4-fold, as inferred from calcium ion concentrations measured by inductively coupled plasma mass spectrometry. Here we demonstrate that polyethylene microplastic exposure directly drives the degradation of coral skeletons, emphasizing the urgency of mitigating plastic pollution to safeguard coral ecosystems.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"7 - 11"},"PeriodicalIF":15.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review 厌氧消化农业废弃物以生产沼气和实现可持续生物能源回收:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-10-26 DOI: 10.1007/s10311-024-01789-1
Ahmed Alengebawy, Yi Ran, Ahmed I. Osman, Keda Jin, Mohamed Samer, Ping Ai
{"title":"Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review","authors":"Ahmed Alengebawy,&nbsp;Yi Ran,&nbsp;Ahmed I. Osman,&nbsp;Keda Jin,&nbsp;Mohamed Samer,&nbsp;Ping Ai","doi":"10.1007/s10311-024-01789-1","DOIUrl":"10.1007/s10311-024-01789-1","url":null,"abstract":"<div><p>Anaerobic digestion constitutes a sustainable method for waste management and renewable energy generation, addressing significant environmental and societal challenges. The growing global waste crisis and the increasing momentum toward sustainable energy solutions emphasize the critical need to enhance anaerobic digestion technology for improved efficiency and environmental advantages. This process mitigates waste accumulation, enhances energy security, and reduces greenhouse gas emissions, providing a feasible solution within the framework of a circular bioeconomy. Here, we review the principles of anaerobic digestion and biogas production, focusing on agricultural waste and the utilization of biogas for energy within a sustainable framework. We specifically explore biogas applications in rural and industrial settings, assess the environmental impacts, and discuss the regulatory landscape with insights from China and Europe. This study reveals that the strategic implementation of anaerobic digestion can markedly improve energy yield and sustainability, demonstrating how focused policies and advanced technological practices can optimize biogas utilization. The review enhances comprehension of environmental impacts, emphasizing insights from China and Europe as key examples.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 6","pages":"2641 - 2668"},"PeriodicalIF":15.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01789-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4-Nonylphenol adsorption, environmental impact and remediation: a review 4-壬基酚吸附、环境影响和补救:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-10-15 DOI: 10.1007/s10311-024-01788-2
Ronaldo Antunes Funari Junior, Lucas Mironuk Frescura, Bryan Brummelhaus de Menezes, Marcelo Barcellos da Rosa
{"title":"4-Nonylphenol adsorption, environmental impact and remediation: a review","authors":"Ronaldo Antunes Funari Junior,&nbsp;Lucas Mironuk Frescura,&nbsp;Bryan Brummelhaus de Menezes,&nbsp;Marcelo Barcellos da Rosa","doi":"10.1007/s10311-024-01788-2","DOIUrl":"10.1007/s10311-024-01788-2","url":null,"abstract":"<div><p>Endocrine-disrupting compounds such as 4-nonylphenol pose significant societal and environmental challenges due to their toxicity and estrogenic properties, adversely impacting human health, wildlife, and aquatic ecosystems. The complexity of 4-nonylphenol environmental behavior, its transport mechanisms, and the challenges in mitigating its impact through adsorption processes are critical. Here we review 4-nonylphenol contamination with focus on remediation by adsorption. We found that biofilms can accumulate 4-nonylphenol in aquatic environments; adsorption equilibrium in soils is influenced by temperature; and microplastics facilitate the transport of 4-nonylphenol through ecosystems. We present effective materials for 4-nonylphenol removal, including graphene oxides, silica, zeolites, and activated carbons. We analyze key variables influencing adsorption efficiency, offering a comprehensive database and insights into optimal removal strategies.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":"241 - 269"},"PeriodicalIF":15.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信