Microplastic mitigation in urban stormwater using green infrastructure: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tauseef Ahmad, Sumaira Gul, Licheng Peng, Tariq Mehmood, Qing Huang, Ashfaq Ahmad, Hazrat Ali, Wajid Ali, Sami Souissi, Philippe Zinck
{"title":"Microplastic mitigation in urban stormwater using green infrastructure: a review","authors":"Tauseef Ahmad, Sumaira Gul, Licheng Peng, Tariq Mehmood, Qing Huang, Ashfaq Ahmad, Hazrat Ali, Wajid Ali, Sami Souissi, Philippe Zinck","doi":"10.1007/s10311-025-01833-8","DOIUrl":null,"url":null,"abstract":"<p>Microplastic pollution in aquatic environments has emerged as a significant environmental concern, posing risks to ecosystems and human health. Urban stormwater runoff has been identified as a major source of microplastics, with microplastic concentrations reaching up to six times higher than those in wastewater treatment plant effluents. Given the increasing urbanization and inadequate waste management, effective mitigation strategies are urgently needed to prevent the discharge of microplastics into natural water systems. Green infrastructure, designed for sustainable stormwater management, has gained attention as a promising approach to reducing microplastic pollution while providing additional environmental benefits. Here, we review various green infrastructure technologies, including bioretention systems, permeable pavements, stormwater ponds, and constructed wetlands, focusing on their effectiveness in microplastic mitigation. Bioretention systems exhibit removal efficiencies ranging from 80% to over 99%, and are particularly effective for particles sized 20 μm or above. Constructed wetlands achieve removal rates between 28 and 75%, effectively treating microplastics in the 100–500 μm range. Permeable pavements demonstrate removal efficiencies of 89–96.6%, especially for particles less than 100 μm. Retention ponds retain 55–98% of microplastics, with sediment retention reaching up to 85%. We found that the performance of these systems is influenced by soil amendments, vegetation, and adsorption-based mechanisms such as biochar applications, which can enhance removal to over 99% under optimized conditions. Phytoremediation with aquatic plants such as <i>Lemna minor</i> achieves a 76% removal rate, while biofilm-based strategies offer slower but potentially sustainable solutions. This review highlights the necessity of integrating multiple green infrastructure approaches to optimize microplastic removal.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"103 1 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01833-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic pollution in aquatic environments has emerged as a significant environmental concern, posing risks to ecosystems and human health. Urban stormwater runoff has been identified as a major source of microplastics, with microplastic concentrations reaching up to six times higher than those in wastewater treatment plant effluents. Given the increasing urbanization and inadequate waste management, effective mitigation strategies are urgently needed to prevent the discharge of microplastics into natural water systems. Green infrastructure, designed for sustainable stormwater management, has gained attention as a promising approach to reducing microplastic pollution while providing additional environmental benefits. Here, we review various green infrastructure technologies, including bioretention systems, permeable pavements, stormwater ponds, and constructed wetlands, focusing on their effectiveness in microplastic mitigation. Bioretention systems exhibit removal efficiencies ranging from 80% to over 99%, and are particularly effective for particles sized 20 μm or above. Constructed wetlands achieve removal rates between 28 and 75%, effectively treating microplastics in the 100–500 μm range. Permeable pavements demonstrate removal efficiencies of 89–96.6%, especially for particles less than 100 μm. Retention ponds retain 55–98% of microplastics, with sediment retention reaching up to 85%. We found that the performance of these systems is influenced by soil amendments, vegetation, and adsorption-based mechanisms such as biochar applications, which can enhance removal to over 99% under optimized conditions. Phytoremediation with aquatic plants such as Lemna minor achieves a 76% removal rate, while biofilm-based strategies offer slower but potentially sustainable solutions. This review highlights the necessity of integrating multiple green infrastructure approaches to optimize microplastic removal.

水生环境中的微塑料污染已成为一个重大的环境问题,对生态系统和人类健康构成风险。城市雨水径流已被确定为微塑料的主要来源,其微塑料浓度比污水处理厂污水中的微塑料浓度高出六倍。鉴于城市化进程不断加快以及废物管理不足,迫切需要有效的缓解策略来防止微塑料排入自然水系。专为可持续雨水管理而设计的绿色基础设施作为减少微塑料污染、同时提供额外环境效益的一种有前途的方法,受到了人们的关注。在此,我们回顾了各种绿色基础设施技术,包括生物滞留系统、可渗透路面、雨水池塘和人工湿地,重点关注它们在减少微塑料污染方面的效果。生物滞留系统的去除率从 80% 到 99% 以上不等,对 20 μm 或以上的颗粒尤其有效。人工湿地的去除率在 28% 到 75% 之间,可有效处理 100-500 μm 范围内的微塑料。透水路面的去除率为 89-96.6%,尤其是对小于 100 μm 的颗粒。截留池可截留 55-98% 的微塑料,沉积物截留率高达 85%。我们发现,这些系统的性能受到土壤改良剂、植被和吸附机制(如生物炭的应用)的影响,在优化条件下,生物炭可将去除率提高到 99% 以上。利用水生植物(如 Lemna minor)进行植物修复可达到 76% 的去除率,而基于生物膜的策略可提供较慢但具有潜在可持续性的解决方案。本综述强调了整合多种绿色基础设施方法以优化微塑料去除的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信