William Shotyk, Beatriz Bicalho, Iain Grant-Weaver, Michael Krachler, Tommy Noernberg, Jiancheng Zheng
{"title":"钪作为定量测定地表水和地下水中自然和人为铅浓度的参考元素","authors":"William Shotyk, Beatriz Bicalho, Iain Grant-Weaver, Michael Krachler, Tommy Noernberg, Jiancheng Zheng","doi":"10.1007/s10311-025-01824-9","DOIUrl":null,"url":null,"abstract":"<p>Scandium has been used to distinguish between natural and anthropogenic sources of lead to the atmosphere. Here, scandium is used to estimate the natural abundance of lead in surface and groundwater. In pristine groundwater sampled at the Elmvale Groundwater Observatory in southern Ontario, the lead/scandium mass ratio (Pb/Sc) ranges from 1.1 to 1.2, similar to the ratio (1.2) most recently proposed for the Upper Continental Crust. In the Athabasca River of northern Alberta, where dissolved lead is well below the global average for uncontaminated river water, the average Pb/Sc ratio was 2.2 in 2014 and in 2015, consistent with the Pb/Sc ratio recently compiled for soil (2.3). In contrast, the average Pb/Sc ratio in the rivers and lakes of central Ontario was 6.0, reflecting the far larger cumulative inputs of anthropogenic, atmospheric lead in eastern Canada compared to western Canada. Support for this interpretation comes from contemporary snow from southern Ontario with an average Pb/Sc ratio of 400. Despite the profound differences in the geology of the study regions, and ignoring the geochemical processes affecting both elements in the watersheds, scandium appears to be a helpful, simple tool for estimating the natural abundance of lead in surface and groundwater. However, the use of the Pb/Sc ratio in this way depends critically on accurate, precise and sensitive measurements of both elements. While the problems of low level lead determinations are well known, those of scandium may have been underestimated.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"38 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scandium as a reference element for quantifying the natural and anthropogenic concentrations of lead in surface water and groundwater\",\"authors\":\"William Shotyk, Beatriz Bicalho, Iain Grant-Weaver, Michael Krachler, Tommy Noernberg, Jiancheng Zheng\",\"doi\":\"10.1007/s10311-025-01824-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scandium has been used to distinguish between natural and anthropogenic sources of lead to the atmosphere. Here, scandium is used to estimate the natural abundance of lead in surface and groundwater. In pristine groundwater sampled at the Elmvale Groundwater Observatory in southern Ontario, the lead/scandium mass ratio (Pb/Sc) ranges from 1.1 to 1.2, similar to the ratio (1.2) most recently proposed for the Upper Continental Crust. In the Athabasca River of northern Alberta, where dissolved lead is well below the global average for uncontaminated river water, the average Pb/Sc ratio was 2.2 in 2014 and in 2015, consistent with the Pb/Sc ratio recently compiled for soil (2.3). In contrast, the average Pb/Sc ratio in the rivers and lakes of central Ontario was 6.0, reflecting the far larger cumulative inputs of anthropogenic, atmospheric lead in eastern Canada compared to western Canada. Support for this interpretation comes from contemporary snow from southern Ontario with an average Pb/Sc ratio of 400. Despite the profound differences in the geology of the study regions, and ignoring the geochemical processes affecting both elements in the watersheds, scandium appears to be a helpful, simple tool for estimating the natural abundance of lead in surface and groundwater. However, the use of the Pb/Sc ratio in this way depends critically on accurate, precise and sensitive measurements of both elements. While the problems of low level lead determinations are well known, those of scandium may have been underestimated.</p>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10311-025-01824-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01824-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scandium as a reference element for quantifying the natural and anthropogenic concentrations of lead in surface water and groundwater
Scandium has been used to distinguish between natural and anthropogenic sources of lead to the atmosphere. Here, scandium is used to estimate the natural abundance of lead in surface and groundwater. In pristine groundwater sampled at the Elmvale Groundwater Observatory in southern Ontario, the lead/scandium mass ratio (Pb/Sc) ranges from 1.1 to 1.2, similar to the ratio (1.2) most recently proposed for the Upper Continental Crust. In the Athabasca River of northern Alberta, where dissolved lead is well below the global average for uncontaminated river water, the average Pb/Sc ratio was 2.2 in 2014 and in 2015, consistent with the Pb/Sc ratio recently compiled for soil (2.3). In contrast, the average Pb/Sc ratio in the rivers and lakes of central Ontario was 6.0, reflecting the far larger cumulative inputs of anthropogenic, atmospheric lead in eastern Canada compared to western Canada. Support for this interpretation comes from contemporary snow from southern Ontario with an average Pb/Sc ratio of 400. Despite the profound differences in the geology of the study regions, and ignoring the geochemical processes affecting both elements in the watersheds, scandium appears to be a helpful, simple tool for estimating the natural abundance of lead in surface and groundwater. However, the use of the Pb/Sc ratio in this way depends critically on accurate, precise and sensitive measurements of both elements. While the problems of low level lead determinations are well known, those of scandium may have been underestimated.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.