Environmental Chemistry Letters最新文献

筛选
英文 中文
The chemical basis of seawater therapies: a review 海水疗法的化学基础:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-27 DOI: 10.1007/s10311-024-01720-8
Michele Costanzo, Maria Anna Rachele De Giglio, Melinda Gilhen-Baker, Giovanni Nicola Roviello
{"title":"The chemical basis of seawater therapies: a review","authors":"Michele Costanzo,&nbsp;Maria Anna Rachele De Giglio,&nbsp;Melinda Gilhen-Baker,&nbsp;Giovanni Nicola Roviello","doi":"10.1007/s10311-024-01720-8","DOIUrl":"10.1007/s10311-024-01720-8","url":null,"abstract":"<div><p>The rising number of diseases and deaths caused by pollution and modern lifestyle habits is a growing societal concern. Marine ecosystems are both victim to this human behaviour as a  recipient of human pollution as well as being  a source of medicinal chemicals which can cure a variety of diseases. In this paper, we review the chemical basis of water-based treatments and their effects on human health, while focusing on the threats to marine ecosystems and the potential benefits of balneotherapy, thalassotherapy, and bioactive chemical species. We found that seawater has potential benefits for skin health, demonstrating emollient properties, protection against skin barrier disruption, and inhibition of atopic dermatitis-like skin lesions. We present the putative mechanisms by which minerals, salts, and marine organic matter can slow down disease progression, through their numerous activities, such as anti-inflammatory, antioxidant, and wound healing properties. Water-living organisms also have an impact on such mechanisms by producing biologically active compounds with beneficial effects on human health.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2133 - 2149"},"PeriodicalIF":15.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01720-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon–neutral hydrogen production by catalytic methane decomposition: a review 催化甲烷分解产生碳中和氢气:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-20 DOI: 10.1007/s10311-024-01732-4
Dwi Hantoko, Wasim Ullah Khan, Ahmed I. Osman, Mahmoud Nasr, Ahmed K. Rashwan, Yahya Gambo, Ahmed Al Shoaibi, Srinivasakannan Chandrasekar, Mohammad M. Hossain
{"title":"Carbon–neutral hydrogen production by catalytic methane decomposition: a review","authors":"Dwi Hantoko,&nbsp;Wasim Ullah Khan,&nbsp;Ahmed I. Osman,&nbsp;Mahmoud Nasr,&nbsp;Ahmed K. Rashwan,&nbsp;Yahya Gambo,&nbsp;Ahmed Al Shoaibi,&nbsp;Srinivasakannan Chandrasekar,&nbsp;Mohammad M. Hossain","doi":"10.1007/s10311-024-01732-4","DOIUrl":"10.1007/s10311-024-01732-4","url":null,"abstract":"<div><p>The global hydrogen demand is projected to increase from 70 million tons in 2019 to more than 200 million tons in 2030. Methane decomposition is a promising reaction for H<sub>2</sub> production, coupled with the synthesis of valuable carbon nanomaterials applicable in fuel cell technology, transportation fuels, and chemical synthesis. Here, we review catalytic methane decomposition, with focus on catalyst development, deactivation, reactivation, regeneration, and on economics. Catalysts include mono-, bi-, and trimetallic compounds and carbon-based compounds. Catalyst deactivation is induced by coke deposition. Despite remarkable strides in research, industrialization remains at an early stage.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1623 - 1663"},"PeriodicalIF":15.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01732-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials for sustainable metallic iron-based water filters: a review 可持续金属铁基滤水器材料:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-18 DOI: 10.1007/s10311-024-01736-0
Minhui Xiao, Rui Hu, Willis Gwenzi, Ran Tao, Xuesong Cui, Huichen Yang, Chicgoua Noubactep
{"title":"Materials for sustainable metallic iron-based water filters: a review","authors":"Minhui Xiao,&nbsp;Rui Hu,&nbsp;Willis Gwenzi,&nbsp;Ran Tao,&nbsp;Xuesong Cui,&nbsp;Huichen Yang,&nbsp;Chicgoua Noubactep","doi":"10.1007/s10311-024-01736-0","DOIUrl":"10.1007/s10311-024-01736-0","url":null,"abstract":"<div><p>Water pollution is calling for a sustainable remediation method such as the use of metallic iron (Fe<sup>0</sup>) to reduce and filter some pollutants, yet the reactivity and hydraulic conductivity of iron filters decline over time under field conditions. Here we review iron filters with focus on metallic corrosion in porous media, flaws in designing iron filters, next-generation filters and perspectives such as safe drinking water supply, iron for anaemia control and coping with a reactive material. We argue that assumptions sustaining the design of current Fe<sup>0</sup> filters are not valid because proposed solutions address the issues of declining iron reactivity and hydraulic conductivity separately. Alternatively, a recent approach suggest that each individual Fe<sup>0</sup> atom corroding within a filter contributes to both reactivity and permeability loss. This approach applies well to alternative iron materials such as bimetallics, composites, hybrid aggregates, e.g. Fe<sup>0</sup>/sand, and nano-Fe<sup>0</sup>. Characterizing the intrinsic reactivity of individual Fe<sup>0</sup> materials is a prerequisite to designing sustainable filters. Indeed, Fe<sup>0</sup> ratio, Fe<sup>0</sup> type, Fe<sup>0</sup> shape, initial porosity, e.g. pore size and pore size distribution, and nature and size of admixing aggregates, e.g. pumice, pyrite and sand, are interrelated parameters which all influence the generation and accumulation of iron corrosion products. Fe<sup>0</sup> should be characterized in long-term experiments, e.g. 12 months or longer, for Fe dissolution, H<sub>2</sub> generation and removal of contaminants in three media, i.e., tap water, spring water and saline water, to allow reactivity comparison and designing field-scale filters.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2113 - 2131"},"PeriodicalIF":15.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01736-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods to treat industrial salted waste: a review 处理工业盐渍废物的方法:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-15 DOI: 10.1007/s10311-024-01721-7
Xiuxiu Ruan, Min Song, Zhihao Fang, Hao Wang, Chaoyang Zhang, Weidong Chen
{"title":"Methods to treat industrial salted waste: a review","authors":"Xiuxiu Ruan,&nbsp;Min Song,&nbsp;Zhihao Fang,&nbsp;Hao Wang,&nbsp;Chaoyang Zhang,&nbsp;Weidong Chen","doi":"10.1007/s10311-024-01721-7","DOIUrl":"10.1007/s10311-024-01721-7","url":null,"abstract":"<div><p>The rising production of industrial salted waste induces issues of disposal and pollution, calling for advanced methods to treat, purify and recycle the raw salt in the context of the circular economy. The main components of salted waste are organic and mineral fractions. Here we review the methods used to treat salted waste with focus on sources of salted waste, properties and removal of organic matter, and separation of minerals. Organic matter can be removed by pyrolysis carbonization, high-temperature melting, elution, and oxidation. Salt can be separated by evaporative crystallization, salt washing, and nanofiltration.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2035 - 2053"},"PeriodicalIF":15.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review 生物质预处理、生物加工和生物制氢反应器设计:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-10 DOI: 10.1007/s10311-024-01722-6
Sahil Sahil, Rickwinder Singh, Shyam K. Masakapalli, Nidhi Pareek, Andrey A. Kovalev, Yuriy V. Litti, Sonil Nanda, Vivekanand Vivekanand
{"title":"Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review","authors":"Sahil Sahil,&nbsp;Rickwinder Singh,&nbsp;Shyam K. Masakapalli,&nbsp;Nidhi Pareek,&nbsp;Andrey A. Kovalev,&nbsp;Yuriy V. Litti,&nbsp;Sonil Nanda,&nbsp;Vivekanand Vivekanand","doi":"10.1007/s10311-024-01722-6","DOIUrl":"10.1007/s10311-024-01722-6","url":null,"abstract":"<div><p>The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1665 - 1702"},"PeriodicalIF":15.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food chain microplastics contamination and impact on human health: a review 食物链微塑料污染及其对人类健康的影响:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-09 DOI: 10.1007/s10311-024-01734-2
Chukwuebuka Gabriel Eze, Chidiebele Emmanuel Nwankwo, Satarupa Dey, Suresh Sundaramurthy, Emmanuel Sunday Okeke
{"title":"Food chain microplastics contamination and impact on human health: a review","authors":"Chukwuebuka Gabriel Eze,&nbsp;Chidiebele Emmanuel Nwankwo,&nbsp;Satarupa Dey,&nbsp;Suresh Sundaramurthy,&nbsp;Emmanuel Sunday Okeke","doi":"10.1007/s10311-024-01734-2","DOIUrl":"10.1007/s10311-024-01734-2","url":null,"abstract":"<div><p>Microplastics have been recently detected in many environmental media and living organisms, yet their transfer and toxicity to humans are poorly known. Here, we review microplastic transfer in the food chain with focus on microplastic pollution sources, methods to analyze microplastics in food, health impact of food-related microplastic exposure, and remediation of microplastic pollution. Microplastic pollution sources include seafood, food additives, packaging materials, and agricultural and industrial products. Remediation techniques comprise the use of microbial enzymes and biofilms. Microplastic detection methods in food rely on separation and quantification by optical detection, scanning electron micrography, and Fourier-transform infrared spectroscopy. Human health impact following microplastic ingestion include cancers, organ and respiration damage, and reproductive impairments. Overall, microplastic toxicity is mainly due to their ability to enter the metabolism, adsorption into the circulatory system for translocation, and difficulty, if not impossibility, of excretion.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1889 - 1927"},"PeriodicalIF":15.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and environmental applications of soil biofilms: a review 土壤生物膜的特征和环境应用:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-08 DOI: 10.1007/s10311-024-01735-1
Guoliang Wang, Tian Li, Qixing Zhou, Xiaoling Zhang, Ruixiang Li, Jinning Wang
{"title":"Characterization and environmental applications of soil biofilms: a review","authors":"Guoliang Wang,&nbsp;Tian Li,&nbsp;Qixing Zhou,&nbsp;Xiaoling Zhang,&nbsp;Ruixiang Li,&nbsp;Jinning Wang","doi":"10.1007/s10311-024-01735-1","DOIUrl":"10.1007/s10311-024-01735-1","url":null,"abstract":"<div><p>Despite the major influence of soils on climate change, carbon sequestration, pollution remediation, and food security, soil remains a largely unexplored media with an extreme complexity of microbes, minerals, and dead organic matter, most of them being actually poorly known. In particular, soil biofilms have recently attracted attention because they strongly influence biogeochemical reactions and processes. Here we review biofilms with focus on their behavior, proliferation, distribution, characterization methods, and applications. Characterization methods include optical, electron, scanning probe, and X-ray microscopy; metagenomics, metatranscriptomics, metaproteomics, metabolomics; and tracking approaches. Applications comprise pollution remediation by metal immobilization or organics degradation; and methane oxidation, carbon dioxide reduction, and carbon sequestration. Advanced methods such as DNA-stable isotope probing and meta-omics have uncovered the multiple functions of soil biofilms and their underlying molecular mechanisms. Investigations have improved our understanding of inter- and intra-kingdom interactions, and of gene transfer. Extracellular materials such as polysaccharides enhance the transport of substances and electrons flow among microorganisms.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1989 - 2011"},"PeriodicalIF":15.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High caffeine levels in old sewer system waters reveal domestic wastewater leakage 旧下水道系统水体中的高咖啡因含量揭示了生活废水泄漏问题
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-05 DOI: 10.1007/s10311-024-01733-3
Noriatsu Ozaki, Tomonori Kindaichi, Akiyoshi Ohashi
{"title":"High caffeine levels in old sewer system waters reveal domestic wastewater leakage","authors":"Noriatsu Ozaki,&nbsp;Tomonori Kindaichi,&nbsp;Akiyoshi Ohashi","doi":"10.1007/s10311-024-01733-3","DOIUrl":"10.1007/s10311-024-01733-3","url":null,"abstract":"<div><p>Infrastructure deterioration is a threat to developed countries, emphasizing the need for effective management techniques. In particular, the leakage of aged domestic sewer pipeline is a major health issue, yet there is a lack of markers to identify domestic leakage. We studied the pollution in urban waters resulting from domestic sewage leakage into storm drainages. We monitored caffeine, fragrance substances and polycyclic aromatic hydrocarbons (PAHs) in the storm discharge points in five urban districts having separate sewer systems aged from 10 to over 40 years. Results show that caffeine and fragrance concentrations tended to increase with sewer system age. For instance, caffeine concentrations in the areas of sewer systems over 40 years old were at least two orders of magnitude higher than in 10-year-old sewer systems, and were as high as 1–10% of domestic sewage, strongly suggesting the leakage of domestic sewer pipelines. PAHs exhibited consistent patterns across the districts. Overall, we observe that sewer leaking processes can be distinguished by analyzing the levels of organic pollutants.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1581 - 1589"},"PeriodicalIF":15.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01733-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Textile production by additive manufacturing and textile waste recycling: a review 通过快速成型技术生产纺织品和回收纺织废料:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-05 DOI: 10.1007/s10311-024-01726-2
Weiqiang Fan, Yongzhen Wang, Rulin Liu, Jing Zou, Xiang Yu, Yaming Liu, Chao Zhi, Jiaguang Meng
{"title":"Textile production by additive manufacturing and textile waste recycling: a review","authors":"Weiqiang Fan,&nbsp;Yongzhen Wang,&nbsp;Rulin Liu,&nbsp;Jing Zou,&nbsp;Xiang Yu,&nbsp;Yaming Liu,&nbsp;Chao Zhi,&nbsp;Jiaguang Meng","doi":"10.1007/s10311-024-01726-2","DOIUrl":"10.1007/s10311-024-01726-2","url":null,"abstract":"<div><p>The rapid growth of textile industry and fast-fashion has led to the production of about 92 million ton of textile waste per year. Nearly 85% of textile waste is disposed of by landfill and incineration, causing serious environmental pollution and huge resource waste, calling for alternative textile production. Here we review the green production of textiles with focus on additive manufacturing, 3- and 4-dimension printing, recycling textile waste, and synthetic and natural fibers. Additive manufacturing technologies, particularly 4-dimension printing, is flexible, green, and allows on-demand manufacturing, which is one solution to the textile waste problem. 4-Dimension printing contributes to the development of intelligent materials, and can create structures that deform in response to external stimuli. Textile waste contains high-quality, low-cost materials that can be re-used and recycled. Applications include smart textiles, flexible electronics, soft robotics, human–computer interaction, and wearable devices.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1929 - 1987"},"PeriodicalIF":15.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of aged microplastics: a review 老化微塑料分析:综述
IF 15 2区 环境科学与生态学
Environmental Chemistry Letters Pub Date : 2024-04-04 DOI: 10.1007/s10311-024-01731-5
Yanqi Shi, Linping Shi, Hexinyue Huang, Kefu Ye, Luming Yang, Zeena Wang, Yifan Sun, Dunzhu Li, Yunhong Shi, Liwen Xiao, Shixiang Gao
{"title":"Analysis of aged microplastics: a review","authors":"Yanqi Shi,&nbsp;Linping Shi,&nbsp;Hexinyue Huang,&nbsp;Kefu Ye,&nbsp;Luming Yang,&nbsp;Zeena Wang,&nbsp;Yifan Sun,&nbsp;Dunzhu Li,&nbsp;Yunhong Shi,&nbsp;Liwen Xiao,&nbsp;Shixiang Gao","doi":"10.1007/s10311-024-01731-5","DOIUrl":"10.1007/s10311-024-01731-5","url":null,"abstract":"<div><p>Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1861 - 1888"},"PeriodicalIF":15.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01731-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信