{"title":"在双金属氧化物上无缝生长氮化碳以降解抗生素残留物","authors":"Sulakshana Shenoy, Chitiphon Chuaicham, Karthikeyan Sekar, Keiko Sasaki","doi":"10.1007/s10311-024-01781-9","DOIUrl":null,"url":null,"abstract":"<p>Emergence of antibiotic-resistant bacteria from overuse of antibiotics is a significant threat to human health. Photocatalysis utilizing semiconductors like graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is cost-effective for antibiotic degradation, however its efficiency is limited by rapid charge carrier recombination. This can be mitigated by forming heterojunctions with compatible semiconductors. Metal oxides, commonly employed for this purpose, are typically deposited on g-C<sub>3</sub>N<sub>4</sub> surfaces, and often agglomerate, resulting in uneven distribution and reduced number of active-sites. Here we present a facile approach for in situ polymerization of g-C<sub>3</sub>N<sub>4</sub> sheets onto bimetallic oxide surfaces, facilitating their seamless integration. CoNiO<sub>2</sub> was utilized as substrate for growth of g-C<sub>3</sub>N<sub>4</sub>, which improved crystallinity and surface area of g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub> composite. Optimized g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub>-3% achieved a tetracycline degradation efficiency of 95.6%, markedly exceeding 61.3% degradation observed with pristine g-C<sub>3</sub>N<sub>4</sub>. Extended X-ray absorption fine structure spectroscopy confirmed synergistic interaction between CoNiO<sub>2</sub> and N-coordinating sites of g-C<sub>3</sub>N<sub>4</sub> by interfacial Ni–N<sub>2</sub> bond, enhancing electron transport. This interaction is further evidenced by energy-resolved distribution of electron trap patterns from reversed double-beam photoacoustic spectroscopy, which reveal that while g-C<sub>3</sub>N<sub>4</sub> displays significant electron trap density peaks around 2.7–2.9 eV. The g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub> enhances this density, indicating formation of an electrical interface heterojunction that improves electron and hole migration across interfacial boundary. Electron spin resonance measurements confirmed that superoxide anion radicals and holes were main active species in promoting tetracycline degradation. Integration of g-C<sub>3</sub>N<sub>4</sub> with bimetallic oxides enhances antibiotic degradation efficiency, presenting a promising and impactful strategy for environmental remediation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"14 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seamless carbon nitride growth on bimetallic oxide for antibiotic residue degradation\",\"authors\":\"Sulakshana Shenoy, Chitiphon Chuaicham, Karthikeyan Sekar, Keiko Sasaki\",\"doi\":\"10.1007/s10311-024-01781-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emergence of antibiotic-resistant bacteria from overuse of antibiotics is a significant threat to human health. Photocatalysis utilizing semiconductors like graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is cost-effective for antibiotic degradation, however its efficiency is limited by rapid charge carrier recombination. This can be mitigated by forming heterojunctions with compatible semiconductors. Metal oxides, commonly employed for this purpose, are typically deposited on g-C<sub>3</sub>N<sub>4</sub> surfaces, and often agglomerate, resulting in uneven distribution and reduced number of active-sites. Here we present a facile approach for in situ polymerization of g-C<sub>3</sub>N<sub>4</sub> sheets onto bimetallic oxide surfaces, facilitating their seamless integration. CoNiO<sub>2</sub> was utilized as substrate for growth of g-C<sub>3</sub>N<sub>4</sub>, which improved crystallinity and surface area of g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub> composite. Optimized g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub>-3% achieved a tetracycline degradation efficiency of 95.6%, markedly exceeding 61.3% degradation observed with pristine g-C<sub>3</sub>N<sub>4</sub>. Extended X-ray absorption fine structure spectroscopy confirmed synergistic interaction between CoNiO<sub>2</sub> and N-coordinating sites of g-C<sub>3</sub>N<sub>4</sub> by interfacial Ni–N<sub>2</sub> bond, enhancing electron transport. This interaction is further evidenced by energy-resolved distribution of electron trap patterns from reversed double-beam photoacoustic spectroscopy, which reveal that while g-C<sub>3</sub>N<sub>4</sub> displays significant electron trap density peaks around 2.7–2.9 eV. The g-C<sub>3</sub>N<sub>4</sub>-CoNiO<sub>2</sub> enhances this density, indicating formation of an electrical interface heterojunction that improves electron and hole migration across interfacial boundary. Electron spin resonance measurements confirmed that superoxide anion radicals and holes were main active species in promoting tetracycline degradation. Integration of g-C<sub>3</sub>N<sub>4</sub> with bimetallic oxides enhances antibiotic degradation efficiency, presenting a promising and impactful strategy for environmental remediation.</p>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10311-024-01781-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01781-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Seamless carbon nitride growth on bimetallic oxide for antibiotic residue degradation
Emergence of antibiotic-resistant bacteria from overuse of antibiotics is a significant threat to human health. Photocatalysis utilizing semiconductors like graphitic carbon nitride (g-C3N4) is cost-effective for antibiotic degradation, however its efficiency is limited by rapid charge carrier recombination. This can be mitigated by forming heterojunctions with compatible semiconductors. Metal oxides, commonly employed for this purpose, are typically deposited on g-C3N4 surfaces, and often agglomerate, resulting in uneven distribution and reduced number of active-sites. Here we present a facile approach for in situ polymerization of g-C3N4 sheets onto bimetallic oxide surfaces, facilitating their seamless integration. CoNiO2 was utilized as substrate for growth of g-C3N4, which improved crystallinity and surface area of g-C3N4-CoNiO2 composite. Optimized g-C3N4-CoNiO2-3% achieved a tetracycline degradation efficiency of 95.6%, markedly exceeding 61.3% degradation observed with pristine g-C3N4. Extended X-ray absorption fine structure spectroscopy confirmed synergistic interaction between CoNiO2 and N-coordinating sites of g-C3N4 by interfacial Ni–N2 bond, enhancing electron transport. This interaction is further evidenced by energy-resolved distribution of electron trap patterns from reversed double-beam photoacoustic spectroscopy, which reveal that while g-C3N4 displays significant electron trap density peaks around 2.7–2.9 eV. The g-C3N4-CoNiO2 enhances this density, indicating formation of an electrical interface heterojunction that improves electron and hole migration across interfacial boundary. Electron spin resonance measurements confirmed that superoxide anion radicals and holes were main active species in promoting tetracycline degradation. Integration of g-C3N4 with bimetallic oxides enhances antibiotic degradation efficiency, presenting a promising and impactful strategy for environmental remediation.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.