IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou
{"title":"Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review","authors":"Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou","doi":"10.1007/s10311-025-01836-5","DOIUrl":null,"url":null,"abstract":"<p>Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"18 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01836-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水和废水处理行业的碳排放量约占全球碳排放量的 2%,因此需要整合可持续能源以减少碳足迹。在此,我们回顾了水力伏打技术在水和废水处理中的应用,重点是水力伏打效应、自供电传感器和污染物去除。水伏特效应可通过湿气诱导水伏特发生器和水蒸发诱导水伏特发生器获得。应变、压力、湿度、气体和液体传感器均可由水伏特发生器供电。值得注意的是,水伏特技术驱动的液体传感器的检测限可达到 1 飞摩尔。水伏特技术通过两种方式减少污染,首先是利用环境中的水分和蒸发产生电能,从而减少对化石燃料的依赖。其次,它利用材料的光催化特性,在水处理过程中分解有机物,从而最大限度地减少化学试剂的使用。其应用包括废水发电、海水淡化和有机物降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review

Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信