aBIOTECH最新文献

筛选
英文 中文
Pepino mosaic virus antagonizes plant m6A modification by promoting the autophagic degradation of the m6A writer HAKAI Pepino花叶病毒通过促进m6A作者HAKAI的自噬降解来拮抗植物m6A修饰
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-02-23 DOI: 10.1007/s42994-023-00097-6
Hao He, Linhao Ge, Zhaolei Li, Xueping Zhou, Fangfang Li
{"title":"Pepino mosaic virus antagonizes plant m6A modification by promoting the autophagic degradation of the m6A writer HAKAI","authors":"Hao He,&nbsp;Linhao Ge,&nbsp;Zhaolei Li,&nbsp;Xueping Zhou,&nbsp;Fangfang Li","doi":"10.1007/s42994-023-00097-6","DOIUrl":"10.1007/s42994-023-00097-6","url":null,"abstract":"<div><p>Autophagy plays an active anti-viral role in plants. Increasing evidence suggests that viruses can inhibit or manipulate autophagy, thereby winning the arms race between plants and viruses. Here, we demonstrate that overexpression of an m<sup>6</sup>A writer from <i>Solanum lycopersicum</i>, SlHAKAI, could negatively regulate pepino mosaic virus (PepMV) infection, inhibit viral RNA and protein accumulations by affecting viral m<sup>6</sup>A levels in tomato plants and vice versa. The PepMV-encoded RNA-dependent RNA polymerase (RdRP) directly interacts with SlHAKAI and reduces its protein accumulation. The RdRP-mediated decreased protein accumulation of SlHAKAI is sensitive to the autophagy inhibitor 3-methyladenine and is compromised by knocking down a core autophagy gene. Furthermore, PepMV RdRP could interact with an essential autophagy-related protein, SlBeclin1. RdRP, SlHAKAI, and SlBeclin1 interaction complexes form bright granules in the cytoplasm. Silencing of <i>Beclin1</i> in <i>Nicotiana benthamiana</i> plants abolishes the RdRP-mediated degradation of SlHAKAI, indicating the requirement of Beclin1 in this process. This study uncovers that the PepMV RdRP exploits the autophagy pathway by interacting with SlBeclin1 to promote the autophagic degradation of the SlHAKAI protein, thereby inhibiting the m<sup>6</sup>A modification-mediated plant defense responses.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"83 - 96"},"PeriodicalIF":3.6,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00097-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50507526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat–Fusarium graminearum interactions 谷物中脱氧雪腐镰刀菌烯醇的积累和解毒及其在小麦-禾谷镰刀菌相互作用中的潜在作用
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-02-18 DOI: 10.1007/s42994-023-00096-7
Kun Luo, Jiao Guo, Dejia He, Guangwei Li, Thérèse Ouellet
{"title":"Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat–Fusarium graminearum interactions","authors":"Kun Luo,&nbsp;Jiao Guo,&nbsp;Dejia He,&nbsp;Guangwei Li,&nbsp;Thérèse Ouellet","doi":"10.1007/s42994-023-00096-7","DOIUrl":"10.1007/s42994-023-00096-7","url":null,"abstract":"<div><p>Deoxynivalenol (DON) is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen <i>Fusarium graminearum</i>. It is a virulence factor that is important in the spread of <i>F. graminearum</i> within cereal heads, and it causes serious yield losses and significant contamination of cereal grains. In recent decades, genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in <i>F. graminearum</i> and the environmental factors that influence DON accumulation. In addition, diverse scab resistance traits related to the repression of DON accumulation in plants have been identified, and experimental studies of wheat–pathogen interactions have contributed to understanding detoxification mechanisms in host plants. The present review illustrates and summarizes the molecular networks of DON mycotoxin production in <i>F. graminearum</i> and the methods of DON detoxification in plants based on the current literature, which provides molecular targets for crop improvement programs. This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance. Furthermore, ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"155 - 171"},"PeriodicalIF":3.6,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00096-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50492249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lipid droplet-associated protein Nem1 regulates appressorium function for infection of Magnaporthe oryzae 一种脂滴相关蛋白Nem1在稻瘟病菌感染中调节附着胞功能
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-02-18 DOI: 10.1007/s42994-023-00098-5
Deng Chen, Xuan Cai, Junjie Xing, Shen Chen, Juan Zhao, Zhiguang Qu, Guotian Li, Hao Liu, Lu Zheng, Junbin Huang, Xiao-Lin Chen
{"title":"A lipid droplet-associated protein Nem1 regulates appressorium function for infection of Magnaporthe oryzae","authors":"Deng Chen,&nbsp;Xuan Cai,&nbsp;Junjie Xing,&nbsp;Shen Chen,&nbsp;Juan Zhao,&nbsp;Zhiguang Qu,&nbsp;Guotian Li,&nbsp;Hao Liu,&nbsp;Lu Zheng,&nbsp;Junbin Huang,&nbsp;Xiao-Lin Chen","doi":"10.1007/s42994-023-00098-5","DOIUrl":"10.1007/s42994-023-00098-5","url":null,"abstract":"<div><p>Lipid droplets are important storages in fungal conidia and can be used by plant pathogenic fungi for infection. However, the regulatory mechanism of lipid droplets formation and the utilization during fungal development and infection are largely unknown. Here, in <i>Magnaporthe oryzae</i>, we identified a lipid droplet-associated protein Nem1 that played a key role in lipid droplets biogenesis and utilization. Nem1 was highly expressed in conidia, but lowly expressed in appressoria, and its encoded protein was localized to lipid droplets. Deletion of <i>NEM1</i> resulted in reduced numbers of lipid droplets and decreased content of diacylglycerol (DAG) or triacylglycerol (TAG). <i>NEM1</i> was required for asexual development especially conidia production. The Δ<i>nem1</i> mutant was nearly loss of virulence to host plants due to defects in appressorial penetration and invasive growth. Remarkably, Nem1 was regulated by the TOR signaling pathway and involved in the autophagy process. The Ser303 residue of Nem1 could be phosphorylated by the cAMP-PKA signaling pathway and was important for biological function of Nem1. Together, our study revealed a regulatory mechanism of lipid biogenesis and metabolism during the conidium and appressorium formation of the rice blast fungus.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"108 - 123"},"PeriodicalIF":3.6,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00098-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50492248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development 染色质可达性景观揭示了小麦籽粒发育过程中亚基因组分化的调控网络。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-02-10 DOI: 10.1007/s42994-023-00095-8
Hongcui Pei, Yushan Li, Yanhong Liu, Pan Liu, Jialin Zhang, Xueni Ren, Zefu Lu
{"title":"Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development","authors":"Hongcui Pei,&nbsp;Yushan Li,&nbsp;Yanhong Liu,&nbsp;Pan Liu,&nbsp;Jialin Zhang,&nbsp;Xueni Ren,&nbsp;Zefu Lu","doi":"10.1007/s42994-023-00095-8","DOIUrl":"10.1007/s42994-023-00095-8","url":null,"abstract":"<div><p>Development of wheat (<i>Triticum aestivum</i> L<i>.</i>) grain mainly depends on the processes of starch synthesis and storage protein accumulation, which are critical for grain yield and quality. However, the regulatory network underlying the transcriptional and physiological changes of grain development is still not clear. Here, we combined ATAC-seq and RNA-seq to discover the chromatin accessibility and gene expression dynamics during these processes. We found that the chromatin accessibility changes are tightly associated with differential transcriptomic expressions, and the proportion of distal ACRs was increased gradually during grain development. Specific transcription factor (TF) binding sites were enriched at different stages and were diversified among the 3 subgenomes. We further predicted the potential interactions between key TFs and genes related with starch and storage protein biosynthesis and found different copies of some key TFs played diversified roles. Overall, our findings have provided numerous resources and illustrated the regulatory network during wheat grain development, which would shed light on the improvement of wheat yields and qualities.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"8 - 19"},"PeriodicalIF":3.6,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00095-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Molecular regulation of tomato male reproductive development 番茄雄性生殖发育的分子调控。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-02-04 DOI: 10.1007/s42994-022-00094-1
Dandan Yang, Zhao Wang, Xiaozhen Huang, Cao Xu
{"title":"Molecular regulation of tomato male reproductive development","authors":"Dandan Yang,&nbsp;Zhao Wang,&nbsp;Xiaozhen Huang,&nbsp;Cao Xu","doi":"10.1007/s42994-022-00094-1","DOIUrl":"10.1007/s42994-022-00094-1","url":null,"abstract":"<div><p>The reproductive success of flowering plants, which directly affects crop yield, is sensitive to environmental changes. A thorough understanding of how crop reproductive development adapts to climate changes is vital for ensuring global food security. In addition to being a high-value vegetable crop, tomato is also a model plant used for research on plant reproductive development. Tomato crops are cultivated under highly diverse climatic conditions worldwide. Targeted crosses of hybrid varieties have resulted in increased yields and abiotic stress resistance; however, tomato reproduction, especially male reproductive development, is sensitive to temperature fluctuations, which can lead to aborted male gametophytes, with detrimental effects on fruit set. We herein review the cytological features as well as genetic and molecular pathways influencing tomato male reproductive organ development and responses to abiotic stress. We also compare the shared features among the associated regulatory mechanisms of tomato and other plants. Collectively, this review highlights the opportunities and challenges related to characterizing and exploiting genic male sterility in tomato hybrid breeding programs.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"72 - 82"},"PeriodicalIF":3.6,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00094-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oryzalexin S biosynthesis: a cross-stitched disappearing pathway Oryzalexin S生物合成:一条交叉缝合的消失途径。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-01-19 DOI: 10.1007/s42994-022-00092-3
Le Zhao, Richard Oyagbenro, Yiling Feng, Meimei Xu, Reuben J. Peters
{"title":"Oryzalexin S biosynthesis: a cross-stitched disappearing pathway","authors":"Le Zhao,&nbsp;Richard Oyagbenro,&nbsp;Yiling Feng,&nbsp;Meimei Xu,&nbsp;Reuben J. Peters","doi":"10.1007/s42994-022-00092-3","DOIUrl":"10.1007/s42994-022-00092-3","url":null,"abstract":"<div><p>Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (<i>BGCs</i>) for such metabolism. The chromosome 4 <i>BGC</i> (<i>c4BGC</i>) is largely associated with momilactone production, in part due to the presence of the initiating <i>syn</i>-copalyl diphosphate (CPP) synthase gene (<i>OsCPS4</i>). Oryzalexin S is also derived from <i>syn</i>-CPP. However, the relevant subsequently acting <i>syn</i>-stemarene synthase gene (<i>OsKSL8</i>) is not located in the <i>c4BGC</i>. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the <i>c4BGC</i> catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 <i>BGC</i> (<i>c7BGC</i>), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct <i>BGCs</i>, in a pathway cross-stitched together by <i>OsKSL8</i>. Notably, in contrast to the widely conserved <i>c4BGC</i>, the <i>c7BGC</i> is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related <i>syn</i>-stemodene synthase <i>OsKSL11</i> was originally considered to be distinct from <i>OsKSL8</i>, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that <i>OsKSL8(j)</i> is being replaced by <i>OsKSL11</i> (<i>OsKSL8i</i>), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"1 - 7"},"PeriodicalIF":3.6,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00092-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in understanding of the epigenetic regulation of plant regeneration 植物再生的表观遗传学调控研究进展。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-01-16 DOI: 10.1007/s42994-022-00093-2
Xuemei Liu, Kehui Zhu, Jun Xiao
{"title":"Recent advances in understanding of the epigenetic regulation of plant regeneration","authors":"Xuemei Liu,&nbsp;Kehui Zhu,&nbsp;Jun Xiao","doi":"10.1007/s42994-022-00093-2","DOIUrl":"10.1007/s42994-022-00093-2","url":null,"abstract":"<div><p>Ever since the concept of “plant cell totipotency” was first proposed in the early twentieth century, plant regeneration has been a major focus of study. Regeneration-mediated organogenesis and genetic transformation are important topics in both basic research and modern agriculture. Recent studies in the model plant <i>Arabidopsis thaliana</i> and other species have expanded our understanding of the molecular regulation of plant regeneration. The hierarchy of transcriptional regulation driven by phytohormone signaling during regeneration is associated with changes in chromatin dynamics and DNA methylation. Here, we summarize how various aspects of epigenetic regulation, including histone modifications and variants, chromatin accessibility dynamics, DNA methylation, and microRNAs, modulate plant regeneration. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in boosting crop breeding, especially if coupled with emerging single-cell omics technologies.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"31 - 46"},"PeriodicalIF":3.6,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00093-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways 整合多组学数据加速了植物初级和次级代谢途径的阐明。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-01-11 DOI: 10.1007/s42994-022-00091-4
Feng Zhu, Weiwei Wen, Yunjiang Cheng, Saleh Alseekh, Alisdair R. Fernie
{"title":"Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways","authors":"Feng Zhu,&nbsp;Weiwei Wen,&nbsp;Yunjiang Cheng,&nbsp;Saleh Alseekh,&nbsp;Alisdair R. Fernie","doi":"10.1007/s42994-022-00091-4","DOIUrl":"10.1007/s42994-022-00091-4","url":null,"abstract":"<div><p>Plants are the most important sources of food for humans, as well as supplying many ingredients that are of great importance for human health. Developing an understanding of the functional components of plant metabolism has attracted considerable attention. The rapid development of liquid chromatography and gas chromatography, coupled with mass spectrometry, has allowed the detection and characterization of many thousands of metabolites of plant origin. Nowadays, elucidating the detailed biosynthesis and degradation pathways of these metabolites represents a major bottleneck in our understanding. Recently, the decreased cost of genome and transcriptome sequencing rendered it possible to identify the genes involving in metabolic pathways. Here, we review the recent research which integrates metabolomic with different omics methods, to comprehensively identify structural and regulatory genes of the primary and secondary metabolic pathways. Finally, we discuss other novel methods that can accelerate the process of identification of metabolic pathways and, ultimately, identify metabolite function(s).</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"47 - 56"},"PeriodicalIF":3.6,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00091-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Weed genomics: yielding insights into the genetics of weedy traits for crop improvement 杂草基因组学:为作物改良提供杂草性状遗传学见解。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2023-01-09 DOI: 10.1007/s42994-022-00090-5
Yujie Huang, Dongya Wu, Zhaofeng Huang, Xiangyu Li, Aldo Merotto Jr, Lianyang Bai, Longjiang Fan
{"title":"Weed genomics: yielding insights into the genetics of weedy traits for crop improvement","authors":"Yujie Huang,&nbsp;Dongya Wu,&nbsp;Zhaofeng Huang,&nbsp;Xiangyu Li,&nbsp;Aldo Merotto Jr,&nbsp;Lianyang Bai,&nbsp;Longjiang Fan","doi":"10.1007/s42994-022-00090-5","DOIUrl":"10.1007/s42994-022-00090-5","url":null,"abstract":"<div><p>Weeds cause tremendous economic and ecological damage worldwide. The number of genomes established for weed species has sharply increased during the recent decade, with some 26 weed species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb (<i>Barbarea vulgaris</i>) to almost 4.4 Gb (<i>Aegilops tauschii</i>). Importantly, chromosome-level assemblies are now available for 17 of these 26 species, and genomic investigations on weed populations have been conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed management and biology, especially origin and evolution. Available weed genomes have indeed revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize the recent progress made in weed genomics and provide a perspective for further exploitation in this emerging field.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"20 - 30"},"PeriodicalIF":3.6,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00090-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic architecture and molecular regulation of sorghum domestication 高粱驯化的遗传结构和分子调控。
IF 3.6 4区 农林科学
aBIOTECH Pub Date : 2022-12-19 DOI: 10.1007/s42994-022-00089-y
Fengyong Ge, Peng Xie, Yaorong Wu, Qi Xie
{"title":"Genetic architecture and molecular regulation of sorghum domestication","authors":"Fengyong Ge,&nbsp;Peng Xie,&nbsp;Yaorong Wu,&nbsp;Qi Xie","doi":"10.1007/s42994-022-00089-y","DOIUrl":"10.1007/s42994-022-00089-y","url":null,"abstract":"<div><p>Over time, wild crops have been domesticated by humans, and the knowledge gained from parallel selection and convergent domestication-related studies in cereals has contributed to current techniques used in molecular plant breeding. Sorghum (<i>Sorghum bicolor</i> (L.) Moench) is the world’s fifth-most popular cereal crop and was one of the first crops cultivated by ancient farmers. In recent years, genetic and genomic studies have provided a better understanding of sorghum domestication and improvements. Here, we discuss the origin, diversification, and domestication processes of sorghum based on archeological discoveries and genomic analyses. This review also comprehensively summarized the genetic basis of key genes related to sorghum domestication and outlined their molecular mechanisms. It highlights that the absence of a domestication bottleneck in sorghum is the result of both evolution and human selection. Additionally, understanding beneficial alleles and their molecular interactions will allow us to quickly design new varieties by further de novo domestication.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 1","pages":"57 - 71"},"PeriodicalIF":3.6,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00089-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信