Carbon Trends最新文献

筛选
英文 中文
Dimetallic praseodymium-cobalt carbon nanotubes as highly efficient electrocatalyst for oxygen reduction reaction 二金属镨钴碳纳米管作为氧气还原反应的高效电催化剂
Carbon Trends Pub Date : 2024-04-04 DOI: 10.1016/j.cartre.2024.100350
Huazhong Liang, Yu Dong, Qin Ding, Xiaoyu Li, Miao Yu, Peihe Li, Limei Duan, Yin Wang
{"title":"Dimetallic praseodymium-cobalt carbon nanotubes as highly efficient electrocatalyst for oxygen reduction reaction","authors":"Huazhong Liang,&nbsp;Yu Dong,&nbsp;Qin Ding,&nbsp;Xiaoyu Li,&nbsp;Miao Yu,&nbsp;Peihe Li,&nbsp;Limei Duan,&nbsp;Yin Wang","doi":"10.1016/j.cartre.2024.100350","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100350","url":null,"abstract":"<div><p>In this study, six bimetallic rare earth (RE = La, Ce, Pr, Nd, Sm, Eu) cobalt nitrogen doped carbon nanotubes (RECo-NCNTs) were synthesized with g-C<sub>3</sub>N<sub>4</sub> derivative method. These RECo-NCNTs were characterized by SEM, BET, XPS, XRD and Raman. In addition, their catalytic performances for oxygen reduction reaction (ORR) had also been tested. The introduction of rare earths did not destroy the structure of nanotubes but apparently change their ORR performances. The PrCo-NCNTs showed the significant improvement in catalytic ability for ORR (onset potential of 0.95 V and half-wave potential of 0.79 V), which is very close to that of commercial 20 % Pt/C. Moreover, PrCo-NCNTs exhibits an excellent catalytic stability (no activity decay after 10000st cycles) and an outstanding methanol toxic tolerance. Assembled in metal–air batteries (Zn-air, Al-air and Mg-air), the PrCo-NCNTs electrode also presents high power densities and discharge voltages.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000312/pdfft?md5=bb2476d76f4456808521b8273b2bae4e&pid=1-s2.0-S2667056924000312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid synthesis of CVD graphene with controllable charge carrier mobility 快速合成具有可控电荷载流子迁移率的 CVD 石墨烯
Carbon Trends Pub Date : 2024-04-03 DOI: 10.1016/j.cartre.2024.100349
Maxim G. Rybin , Evgeniy A. Guberna , Ekaterina A. Obraztsova , Ivan Kondrashov , Irina I. Kurkina , Svetlana A. Smagulova , Elena D. Obraztsova
{"title":"Rapid synthesis of CVD graphene with controllable charge carrier mobility","authors":"Maxim G. Rybin ,&nbsp;Evgeniy A. Guberna ,&nbsp;Ekaterina A. Obraztsova ,&nbsp;Ivan Kondrashov ,&nbsp;Irina I. Kurkina ,&nbsp;Svetlana A. Smagulova ,&nbsp;Elena D. Obraztsova","doi":"10.1016/j.cartre.2024.100349","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100349","url":null,"abstract":"<div><p>A high mobility of charge carriers and a low sheet resistance in graphene are the key indicators of its quality and applicability in electronic devices. In turn, the mobility of charge carriers in graphene is determined by graphene film smoothness. The electron scattering on structure defects of graphene film (wrinkles and grain boundaries) strongly affects the charge carrier mobility. In this work a simple and ultrafast approach for synthesis of graphene monolayer with the controllable smoothness and wrinkle density onto a resistively heated copper foil is presented. The method is a cold-wall chemical vapor deposition from methane. The fast synthesis of graphene with a full process cycle of 3 min is demonstrated. The structural defect density of polycrystalline graphene is optimized by appropriate combinations of methane concentration in the chamber and duration of synthesis process. Under the lower concentration of methane with the longer synthesis time the lower defect density in graphene appeared. The increase of process time from 30 s up to 10 min (under the decrease of methane concentration from 4.5 % to 0.36 %, respectively) leads to increase of average distance between wrinkles in graphene film from 6 µm to 35 µm. А charge carrier mobility as high as 2170 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> and a sheet resistance as low as 318 Ohm/□ under the lowest wrinkle density are measured for graphene polycrystalline monolayer deposited onto SiO<sub>2</sub> substrate.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000300/pdfft?md5=3bab922691b826d94064a31a70159e7e&pid=1-s2.0-S2667056924000300-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and transformation of graphene-like structures from bamboo waste for photoelectrochemical devices 利用竹废料合成和转化类石墨烯结构,用于光电化学器件
Carbon Trends Pub Date : 2024-04-03 DOI: 10.1016/j.cartre.2024.100351
Febi Indah Fajarwati , Rahmat Hidayat , Ganjar Fadillah
{"title":"Synthesis and transformation of graphene-like structures from bamboo waste for photoelectrochemical devices","authors":"Febi Indah Fajarwati ,&nbsp;Rahmat Hidayat ,&nbsp;Ganjar Fadillah","doi":"10.1016/j.cartre.2024.100351","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100351","url":null,"abstract":"<div><p>This study presents a sustainable and versatile approach to synthesize graphene-like structures from bamboo waste for application in photoelectrochemical (PEC) devices. Due to its high cellulose content, bamboo, a locally available and renewable resource, is a perfect precursor for producing graphene-like materials. The synthesis process involves bamboo waste pyrolysis, followed by treatments with different solvents: ultrapure water (UPW), NaOH, and green tea extract. Characterization techniques confirmed the successful transformation of bamboo waste into carbon-rich, graphene-like materials with varying surface properties. The electrochemical characterization showed that the graphene-like materials could transfer electrons very well with a high current response compared to charcoal as a precursor. PEC evaluations revealed their potential as photoanodes, exhibiting efficient light absorption and charge carrier separation. This research emphasizes the significance of bamboo waste as a valuable precursor for eco-friendly graphene-like materials, offering a sustainable pathway for developing efficient PEC devices and green energy technologies.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000324/pdfft?md5=becce2b3559b50cc2584ec1ebcabb1e7&pid=1-s2.0-S2667056924000324-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and dynamics of PtSi nanoparticles on a carbon nanofilm by in-situ TEM Joule heating 通过原位 TEM 焦耳加热在碳纳米薄膜上合成 PtSi 纳米粒子及其动力学特性
Carbon Trends Pub Date : 2024-03-28 DOI: 10.1016/j.cartre.2024.100348
Simon Hettler , Raul Arenal
{"title":"Synthesis and dynamics of PtSi nanoparticles on a carbon nanofilm by in-situ TEM Joule heating","authors":"Simon Hettler ,&nbsp;Raul Arenal","doi":"10.1016/j.cartre.2024.100348","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100348","url":null,"abstract":"<div><p><em>In-situ</em> transmission electron microscopy has evolved to be a unique technique to study process dynamics down to the atomic scale. Here, we show that <em>in-situ</em> Joule heating of carbon nanofilms facilitates the investigation of the nucleation, annealing, diffusion and evaporation of PtSi nanoparticles in a controlled way. The nanoparticles form from Pt-based hydrocarbon molecules and silicon oxide present on the amorphous carbon nanofilm. The <em>in-situ</em> transmission electron microscopy approach permits shedding light on the interaction between the nanoparticles and the carbon support, crucial information when aiming for stable catalytic applications. The method is versatile, allows reaching very high temperatures and could be applied to study many different combinations of bimetallic and even multimetallic high-entropy alloy nanoparticles.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000294/pdfft?md5=a97b463ea574b5fa05f8b90da6565eaa&pid=1-s2.0-S2667056924000294-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of hydrophobic, resistive barrier and anticorrosion performance of epoxy coating with addition of Clay-Modified Green Silico-Graphitic Carbon 添加粘土改性的绿色硅石墨碳可提高环氧涂料的疏水、电阻屏障和防腐性能
Carbon Trends Pub Date : 2024-03-22 DOI: 10.1016/j.cartre.2024.100347
Anu Verma , Chandra Sekhar Tiwary , Jayanta Bhattacharya
{"title":"Enhancement of hydrophobic, resistive barrier and anticorrosion performance of epoxy coating with addition of Clay-Modified Green Silico-Graphitic Carbon","authors":"Anu Verma ,&nbsp;Chandra Sekhar Tiwary ,&nbsp;Jayanta Bhattacharya","doi":"10.1016/j.cartre.2024.100347","DOIUrl":"10.1016/j.cartre.2024.100347","url":null,"abstract":"<div><p>Under this study, a straightforward method for producing clay-modified silico-graphitic carbon (CGSGC) was developed and applied to create CGSGC/epoxy coatings for carbon steel (CS). The CGSGC was synthesized using a mixture of 25 % pond clay, and 75 % remnant agricultural biomass by mass via pyrolysis route. The aim was to evaluate the barrier and anti-corrosion properties of these coatings. The results demonstrated that adding 0.1 wt.% of CGSGC in the epoxy (EP) matrix enhanced its anti-corrosion inhibition capabilities by 99.8 % when compared with standard EP coating. The 0.1 wt.% CGSGC/EP mixed coating also exhibited robust hydrophobicity with WCA of 142.2° and thermal stability up to 250 °C with 2–3 % coating weight reduction. The microhardness of the optimized sample shows a 59.18 % improvement compared to standard EP coating. SEM images revealed improved EP compactness and reduction in microstructural defects (holes and cracks), with the incorporation of 0.1 wt.% CGSGC. 3D profilometry showed a smoother surface for the 0.1 wt.% CGSGC/EP coating. Similar such materials, while being abundantrly and renewably available, can be a safer alternative to conventional hazardous chemicals for protecting carbon steel from corrosion; not to mention the carbon credit benefits they entail.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000282/pdfft?md5=b88834b0918431cb8ddb55c43a40e4be&pid=1-s2.0-S2667056924000282-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140275240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhombohedral stacking-faults in exfoliated highly oriented pyrolytic graphite 剥离高取向热解石墨中的斜方体堆积断层
Carbon Trends Pub Date : 2024-03-20 DOI: 10.1016/j.cartre.2024.100345
Filippo Boi , Cheng-Yang Lee , Shanling Wang , Hansong Wu , Lei Li , Lin Zhang , Jiaxin Song , Yixin Dai , Ayoub Taallah , Omololu Odunmbaku , Anna Corrias , Aleksandra Baron-Wiechec , Shuping Zheng , Salvatore Grasso
{"title":"Rhombohedral stacking-faults in exfoliated highly oriented pyrolytic graphite","authors":"Filippo Boi ,&nbsp;Cheng-Yang Lee ,&nbsp;Shanling Wang ,&nbsp;Hansong Wu ,&nbsp;Lei Li ,&nbsp;Lin Zhang ,&nbsp;Jiaxin Song ,&nbsp;Yixin Dai ,&nbsp;Ayoub Taallah ,&nbsp;Omololu Odunmbaku ,&nbsp;Anna Corrias ,&nbsp;Aleksandra Baron-Wiechec ,&nbsp;Shuping Zheng ,&nbsp;Salvatore Grasso","doi":"10.1016/j.cartre.2024.100345","DOIUrl":"10.1016/j.cartre.2024.100345","url":null,"abstract":"<div><p>The recent observation of possible granular superconductivity in highly oriented pyrolytic graphite (HOPG) has attracted significant research interest. Here we report a novel investigation on the structural-properties of exfoliated-HOPG. We investigated two types of exfoliation methods, involving either a full (method-1) or partial (method-2) contact between adhesive tape and the main HOPG. Structural characterization was obtained by employing X-ray diffraction (XRD), Raman spectroscopy and electron microscopy (SEM). In particular, Raman point and mapping spectroscopy revealed significant structural-transitions from ABA (Bernal) to ABC (rhombohedral) stacking (stacking-faults), in those samples obtained with the method-2. Interestingly, strained regions exhibiting structural-deformations with a ridge-like morphology were reproducibly identified. The acquired Raman-spectra revealed a local enhancement of the D and D’ bands-intensity together with contributions arising from Electronic Raman Scattering (ERS) across the band-gap of rhombohedral-graphite, at middle (∼1870 cm<sup>−1</sup>) and high (∼ 2680 cm<sup>−1</sup>) frequency. HRTEM of the samples produced with the method-2 allowed also for the identification of local-coexistence of ripplocation-like defects with moiré superlattices, an indicator of non-uniform c-axis configuration.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000269/pdfft?md5=361add4b4f26a7a76f11c52e20f429d0&pid=1-s2.0-S2667056924000269-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140268959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of zinc-ion hybrid super-capacitor based on chemically activated (KOH/H3PO4) ground nutshell biochar 评估基于化学活化(KOH/H3PO4)研磨果壳生物炭的锌离子混合超级电容器
Carbon Trends Pub Date : 2024-03-19 DOI: 10.1016/j.cartre.2024.100341
Manisha Gautam , Tarun Patodia , Pushpendra Kushwaha , Madhu Agrawal , Kanupriya Sachdev Prof. , Himmat Singh Kushwaha
{"title":"Evaluation of zinc-ion hybrid super-capacitor based on chemically activated (KOH/H3PO4) ground nutshell biochar","authors":"Manisha Gautam ,&nbsp;Tarun Patodia ,&nbsp;Pushpendra Kushwaha ,&nbsp;Madhu Agrawal ,&nbsp;Kanupriya Sachdev Prof. ,&nbsp;Himmat Singh Kushwaha","doi":"10.1016/j.cartre.2024.100341","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100341","url":null,"abstract":"<div><p>In the realm of advancing energy storage technologies, the efficacy of natural biomass sources in mitigating environmental constraints has gained prominence. This study delves into the evolving landscape of energy storage devices, specifically batteries, super-capacitors, and the nascent domain of zinc-ion hybrid super-capacitors (ZIHSC). The focus centers on biomass-derived highly activated carbon, a burgeoning field of research esteemed for its diversity, environmental compatibility, distinctive structural attributes, and unique surface characteristics. This investigation presents a comparative analysis of activated carbons derived from ground nutshell (GS) in the context of ZIHSC applications. Emphasis is placed on the significance of a straightforward biochar synthesis process and subsequent chemical activation. The activated biochar, denoted as GS-H<sub>3</sub>PO<sub>4</sub> and synthesized using H<sub>3</sub>PO<sub>4</sub>, exhibits a discernibly higher Brunauer Emmett Teller (B.E.T.) surface area when juxtaposed with pre-carbonized ground nutshell (GS-Biochar).The ZIHSC cell incorporating GS-H<sub>3</sub>PO<sub>4</sub> manifests noteworthy energy density metrics, registering at 50.28 Wh Kg<sup>−1</sup> (100 W Kg<sup>−1</sup>) and 11 Wh Kg<sup>−1</sup> (2 kW Kg<sup>−1</sup>). Additionally, it demonstrates a specific capacitance of 199 F g<sup>−1</sup> (2 mV s<sup>−1</sup>). These findings underscore the promising potential of H<sub>3</sub>PO<sub>4</sub>-derived activated carbon in optimizing cathode performance for Zinc-ion hybrid super-capacitors. This study contributes to the growing understanding of biomass-derived materials, offering insights into the nuanced interplay between synthesis methods and electrochemical properties, crucial for advancing sustainable energy storage solutions.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000221/pdfft?md5=fc22c2da8dca140e8c41892ca5072c23&pid=1-s2.0-S2667056924000221-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small-angle x-ray scattering analysis of carbon fiber voids considering void length distribution 考虑空隙长度分布的碳纤维空隙小角 X 射线散射分析
Carbon Trends Pub Date : 2024-03-18 DOI: 10.1016/j.cartre.2024.100346
Daisuke Kimura , Masahiko Demura , Kenji Nagata , Toshihira Irisawa , Yoshiki Sugimoto , Wataru Takarada , Masatoshi Shioya
{"title":"Small-angle x-ray scattering analysis of carbon fiber voids considering void length distribution","authors":"Daisuke Kimura ,&nbsp;Masahiko Demura ,&nbsp;Kenji Nagata ,&nbsp;Toshihira Irisawa ,&nbsp;Yoshiki Sugimoto ,&nbsp;Wataru Takarada ,&nbsp;Masatoshi Shioya","doi":"10.1016/j.cartre.2024.100346","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100346","url":null,"abstract":"<div><p>The analysis method proposed by Ruland et al. is widely used to analyze the void lengths in carbon fibers, but it could not apply to mesophase pitch-based carbon fibers. We thought that the reason for the inability to analyze pitch-based carbon fibers was the length distribution of voids that Ruland neglected. We investigated an analytical method that considers the length distribution of voids in carbon fibers. The proposed new method could be applied to various carbon fibers from polyacrylonitrile and mesophase pitch. The analysis results revealed that the average length of voids in mesophase pitch-based carbon fibers is not only long but also widely distributed. On the other hand, the voids of carbon fibers tend to be longer as the crystallite length is longer in both polyacrylonitrile-based and mesophase-based carbon fibers. It suggests that the growth of void length is strongly influenced by the growth of crystallites in the plane direction.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000270/pdfft?md5=2ed0023ba4c6ba8440beb2a449266f0a&pid=1-s2.0-S2667056924000270-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermonanomechanics of graphene oxide-M13 bacteriophage nanocomposites -towards graphene-based nanodevices 氧化石墨烯-M13噬菌体纳米复合材料的热变形力学--面向石墨烯基纳米器件
Carbon Trends Pub Date : 2024-03-17 DOI: 10.1016/j.cartre.2024.100343
Kate Stokes , Yiwei Sun , Haowei Zhang , Paolo Passaretti , Henry White , Pola Goldberg Oppeneheimer
{"title":"Thermonanomechanics of graphene oxide-M13 bacteriophage nanocomposites -towards graphene-based nanodevices","authors":"Kate Stokes ,&nbsp;Yiwei Sun ,&nbsp;Haowei Zhang ,&nbsp;Paolo Passaretti ,&nbsp;Henry White ,&nbsp;Pola Goldberg Oppeneheimer","doi":"10.1016/j.cartre.2024.100343","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100343","url":null,"abstract":"<div><p>The self-assembly of graphene oxide (GO) and M13 bacteriophage results in the formation of micro-porous structures, known as GraPhage13 aerogels (GPA). Given the limited applications of aerogels in industry due to their nanomechanical properties, along with the previously observed temperature-dependent characteristics in graphene-based nanocomposites, a thorough exploration of the thermosensitive nanomechanical properties of GPA is essential. Herein, a comprehensive characterisation of the morphology, composition, and spectroscopic analysis of the GPA for a range of temperatures has been conducted and correlated with its nanomechanical properties. Elevated temperatures have been found to lead to gradual removal of oxygen-containing functional groups (OCFGs) from GPA, resulting in increased structural defects and reduced stiffness. Notably, unique nanomechanical behaviours of GPA have been further identified, where the thermal expansion of <em>sp<sup>3</sup></em> bonds exceeds that of a crystalline <em>sp<sup>3</sup></em> structure, while the thermal contraction of <em>sp<sup>2</sup></em> bonds in GPA is found to be between graphite and GO. This underscores the impact of GO functionalisation on the thermal expansion behaviour of GPA. The obtained insights enhance the overall comprehension of the temperature annealing impact on GPA and highlight the tunability of its nanomechanical properties, showcasing a broad potential of this novel nanocomposite across a diverse range of applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000245/pdfft?md5=61c20b5d412f4a7ffc4a839c695cc48e&pid=1-s2.0-S2667056924000245-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of nitrogen-doped reduced graphene oxide reinforcement on the thermal and mechanical properties of CFRP 掺氮还原氧化石墨烯增强材料对 CFRP 热性能和机械性能的影响
Carbon Trends Pub Date : 2024-03-17 DOI: 10.1016/j.cartre.2024.100344
Tahir Soyugüzel , Hülya Kaftelen-Odabaşı , Zahit Mecitoğlu
{"title":"The impact of nitrogen-doped reduced graphene oxide reinforcement on the thermal and mechanical properties of CFRP","authors":"Tahir Soyugüzel ,&nbsp;Hülya Kaftelen-Odabaşı ,&nbsp;Zahit Mecitoğlu","doi":"10.1016/j.cartre.2024.100344","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100344","url":null,"abstract":"<div><p>This study used experimental methods to investigate the impact of nitrogen-doped reduced graphene oxide particles (ND-RGOP) reinforcement on thermal and mechanical properties of unidirectional carbon fiber/ epoxy composites (CFRP). In the results, storage modulus and loss modulus significantly increase with the ND-RGOP addition. Besides, glass transition temperature is enhanced with the addition of 0.4 wt% ND-RGOP. In tensile mode, when compared to the baseline (0 weight% ND-RGOP) composites, the elastic modulus in the 0° direction (E<sub>1</sub>) enhanced by 8.25 % and 11.39 % with 0.4 (0.4 weight%) and 0.8 (0.8 weight%) ND-RGOP addition, respectively. Besides, the ultimate tensile strength of the 0.4 ND-RGOP/CFRP composites significantly reduced by 16.33 % and 53.08 % in both 0° and 90° directions, respectively, as a result of the fracture mechanism changing from fiber pull out and fiber cracking to fiber breakage which was confirmed by SEM investigations. Furthermore, both the compressive modulus and the shear modulus increased with ND-RGOP reinforcement over 10 %, although the ultimate compressive strength decreases with low ND-RGOP reinforcement. In conclusion, low concentrations of ND-RGOP addition improves the thermal and mechanical properties of CFRP laminates in elastic region, although high concentrations of ND-RGOP decreases the thermal properties.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000257/pdfft?md5=5e86c456267e51fbf1bc301a00a23f7e&pid=1-s2.0-S2667056924000257-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信