Hossein Shahidi Shahidani , Mohammad Bagher Askari , Majid Seifi
{"title":"Facile synthesis of MnSe@MoSe2 grown on MWCNT for high-performance supercapacitors","authors":"Hossein Shahidi Shahidani , Mohammad Bagher Askari , Majid Seifi","doi":"10.1016/j.cartre.2025.100496","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal selenides (TMSs) are recognized for their excellent electrical and mechanical characteristics, as well as their availability and low cost, which have made them a focal point in materials research. Herein, we explore how multi-walled carbon nanotubes influence the electrochemical characteristics of manganese selenide (MnSe) and molybdenum diselenide (MoSe<sub>2</sub>) compounds. Specifically, MnSe@MoSe<sub>2</sub> electrode was synthesized on MWCNTs using a hydrothermal technique, and after synthesis, the samples were studied by various analytical techniques. Galvanostatic charge-discharge measurements, electrochemical impedance spectroscopy, and cyclic voltammetry demonstrated the synthesized composites’ strong potential for supercapacitor applications. The specific capacitance of MnSe@MoSe<sub>2</sub>/MWCNT was calculated to be 1033 F/g, maintaining 99 % stability over 2000 cycles at a current density of 5 A/g. Also, the dense morphology of nanosheets showed that the MnSe@MoSe<sub>2</sub>/MWCNT composite has more electrochemical active sites to absorb more electrolyte ions, facilitating reduced internal resistance, and improved ion transport efficiency. Therefore, these characteristics suggest that the material is a strong candidate for systems with energy storage electrodes.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100496"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266705692500046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal selenides (TMSs) are recognized for their excellent electrical and mechanical characteristics, as well as their availability and low cost, which have made them a focal point in materials research. Herein, we explore how multi-walled carbon nanotubes influence the electrochemical characteristics of manganese selenide (MnSe) and molybdenum diselenide (MoSe2) compounds. Specifically, MnSe@MoSe2 electrode was synthesized on MWCNTs using a hydrothermal technique, and after synthesis, the samples were studied by various analytical techniques. Galvanostatic charge-discharge measurements, electrochemical impedance spectroscopy, and cyclic voltammetry demonstrated the synthesized composites’ strong potential for supercapacitor applications. The specific capacitance of MnSe@MoSe2/MWCNT was calculated to be 1033 F/g, maintaining 99 % stability over 2000 cycles at a current density of 5 A/g. Also, the dense morphology of nanosheets showed that the MnSe@MoSe2/MWCNT composite has more electrochemical active sites to absorb more electrolyte ions, facilitating reduced internal resistance, and improved ion transport efficiency. Therefore, these characteristics suggest that the material is a strong candidate for systems with energy storage electrodes.
过渡金属硒化物(tms)以其优异的电气和机械特性,以及其可用性和低成本而闻名,这使其成为材料研究的焦点。在此,我们探讨了多壁碳纳米管如何影响硒化锰(MnSe)和二硒化钼(MoSe2)化合物的电化学特性。具体而言,利用水热技术在MWCNTs上合成MnSe@MoSe2电极,并在合成后使用各种分析技术对样品进行研究。恒流充放电测量、电化学阻抗谱和循环伏安法证明了合成复合材料在超级电容器应用方面的强大潜力。计算得出MnSe@MoSe2/MWCNT的比电容为1033 F/g,在5 a /g的电流密度下,在2000次循环中保持99%的稳定性。此外,纳米片致密的形貌表明MnSe@MoSe2/MWCNT复合材料具有更多的电化学活性位点来吸收更多的电解质离子,有利于降低内阻,提高离子传输效率。因此,这些特性表明该材料是储能电极系统的有力候选材料。