{"title":"Cu and Co supported on Vulcan XC-72R nanocomposites: Synthesis, characterization, and phenol degradation","authors":"Ivelina Tsacheva , Mariela Dimitrova , Adriana Gigova , Ognian Dimitrov , Dzhamal Uzun","doi":"10.1016/j.cartre.2025.100530","DOIUrl":"10.1016/j.cartre.2025.100530","url":null,"abstract":"<div><div>In this research, we reported microwave-assisted synthesis of Cu- and Co-containing nanocomposites supported on Vulcan XC-72R. The nanocomposites were structurally characterized by XRD, BET, SEM, and EDS techniques. The results were confirmed that the propose synthesis method was suitable, efficient, and easy to use for the preparation of carbon nanomaterials. The nanocomposites were used as electrocatalysts in an electrochemical system of phenol degradation. Co-containing electrode material was reached 31 % phenol degradation. The electrolysis of phenol degradation was conducted at a constant current density of 10 mA/cm<sup>2</sup>, an initial concentration of phenol of 0.158 mg/ml, a pH of 6.8, a processing time of two hours, and at a temperature of 20 °C.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100530"},"PeriodicalIF":3.1,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144166652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-24DOI: 10.1016/j.cartre.2025.100528
J. Vahidi , S.M. Golmaei , Morteza Jamshidi
{"title":"A novel optimized computational approach to investigate the motion of a single-walled carbon nanotube conveying fluid flow","authors":"J. Vahidi , S.M. Golmaei , Morteza Jamshidi","doi":"10.1016/j.cartre.2025.100528","DOIUrl":"10.1016/j.cartre.2025.100528","url":null,"abstract":"<div><div>In the current investigation, the nonlinear vibration of a single-walled carbon nanotube is analyzed both numerically and analytically. The nonlocal beam model and Pasternak foundation are employed to evaluate the nanotube's vibration behavior. The deflection equation, which serves as the primary variable in this study, effectively captures the nonlinear vibrational characteristics commonly observed in engineering applications. A novel meshless scheme—the optimized Akbari-Ganji method (OAGM)—has been developed and applied to solve the governing differential equation. The term <em>optimization</em> has been intentionally emphasized in this context to highlight a key innovation of the study: the refinement and enhancement of the original Akbari-Ganji method through systematic optimization techniques to improve convergence, accuracy, and computational efficiency. This advancement not only distinguishes the present research from prior approaches but also underscores its practical applicability in complex engineering problems. The validity of the proposed method is demonstrated through comparison with previous studies, revealing that the OAGM delivers a fast, reliable, and highly accurate analytical approximation.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100528"},"PeriodicalIF":3.1,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144166653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-24DOI: 10.1016/j.cartre.2025.100529
Sukanya Sukanya , Maria Argirusi , René Wilhelm
{"title":"Liquid-phase suspension stabilization and exfoliation of end-of-life batteries high-quality graphite with a natural surfactant","authors":"Sukanya Sukanya , Maria Argirusi , René Wilhelm","doi":"10.1016/j.cartre.2025.100529","DOIUrl":"10.1016/j.cartre.2025.100529","url":null,"abstract":"<div><div>Sustainable recycling of end-of-life batteries is critical in addressing both environmental concerns and resource scarcity. This study presents the liquid-phase exfoliation of high-quality graphite derived from spent batteries, employing a natural anionic surfactant to achieve stable suspensions in an organic solvent. Moreover, metal impurities of the spent anode material were removed via extraction with water. The use of acid treatment was avoided. The exfoliation process involves ultrasonication in the presence of the surfactant, which facilitates partial delamination of the graphite material while preserving structural integrity of the spent graphite while maintaining structural integrity. The resulting graphite suspensions demonstrate excellent stability, attributed to the effective surfactant adsorption on the graphite surfaces, preventing re-stacking and aggregation. Characterization techniques, including Raman spectroscopy, X-ray diffraction, and electron microscopy, confirm the high quality and few-layer nature of the exfoliated graphite. Additionally, the environmental benefits and cost-effectiveness of using the surfactant are highlighted. This approach not only facilitates the reuse of valuable materials from waste batteries but also aligns with green chemistry principles, offering a promising route for sustainable material recovery and the production of high-performance graphite for various applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100529"},"PeriodicalIF":3.1,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144166651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-23DOI: 10.1016/j.cartre.2025.100526
K.B. Nerkar, Poonam Parkar, Ajay Chaudhari
{"title":"Metal-cluster (Be, Sc, Ti) decorated C24 nanocages and their hydrogen storage performance","authors":"K.B. Nerkar, Poonam Parkar, Ajay Chaudhari","doi":"10.1016/j.cartre.2025.100526","DOIUrl":"10.1016/j.cartre.2025.100526","url":null,"abstract":"<div><div>Single Be, Sc, Ti metal atom and their cluster (dimer and trimer) decorated C<sub>24</sub> nanocages are considered for hydrogen storage. A comparison of single metal atom, dimer, and trimer decorated C<sub>24</sub> nanocages and their hydrogen storage performance is carried out. Decoration of single Be atom on C<sub>24</sub> nanocage distorts the nanocage and it is not suitable for hydrogen storage. Be<sub>2</sub>, Be<sub>3</sub>, Sc, Sc<sub>2</sub>, Sc<sub>3</sub>, Ti, Ti<sub>2</sub>, and Ti<sub>3</sub> metal atom/cluster decoration do not distort the C<sub>24</sub> nanocage geometry before H<sub>2</sub> adsorption. After H<sub>2</sub> adsorption Sc<sub>2</sub>, Sc<sub>3</sub> and Ti<sub>3</sub> clusters get broken into their constituent atoms and do not remain in cluster form. Among the metal cluster decorated C<sub>24</sub> structures considered, C<sub>24</sub>Ti and C<sub>24</sub>Ti<sub>2</sub> show thermodynamically favorable H<sub>2</sub> adsorption at ambient conditions without distorting the metal cluster after H<sub>2</sub> adsorption and thus they are more suitable for hydrogen storage at ambient conditions than the other structures considered. Though the Sc<sub>3</sub> and Ti<sub>3</sub> cluster decorated C<sub>24</sub> nanocages show the highest and second highest H<sub>2</sub> uptake capacity among all the structures considered and also thermodynamically favorable H<sub>2</sub> adsorption at ambient conditions, the Sc<sub>3</sub> and Ti<sub>3</sub> clusters get broken after maximum H<sub>2</sub> molecules adsorption.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100526"},"PeriodicalIF":3.1,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144178493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peanut shell biochar for plastic electrodes: Green E-sensors for sensitive heavy metal detection","authors":"Monica Mosquera-Ortega , Federico Figueredo , Florencia Fernandez , Pablo Arnal , Eduardo Cortón , Sabina Susmel","doi":"10.1016/j.cartre.2025.100520","DOIUrl":"10.1016/j.cartre.2025.100520","url":null,"abstract":"<div><div>The upcycling of agricultural waste into high-value functional materials is a key aspect of sustainable material development and the circular bioeconomy. This study investigates the fabrication and characterization of biochar-based electrodes (E-sensors) derived from peanut shells, an abundant agro-industrial by-product with emerging potential for valorization. To enhance electrochemical performance, biochar (Bc) was modified with chitosan CS under to alkaline treatment, improving hydrophilicity, porosity, and charge transfer properties. Structural and surface analyses, including FTIR, Raman spectroscopy, SEM, and XPS, confirmed the successful introduction of functional groups while preserving the hierarchical pore structure of Bc. Electrochemical evaluation, using cyclic voltammetry and square-wave stripping anodic voltammetry, revealed satisfactory results for Pb²⁺and Cd²⁺detection in buffer and real sea water samples. Additionally, to improve the analytical performance bismuth was successfully electrodeposited at the unconventional plastic electrodes surface. This contributed to enhance the Pb and Cd limits of detection in sea water (14.27 ng/mL, RSD 10 % and 20.74 ng/mL, RSD 7 % respectively), with results well below WHO and EPA regulatory thresholds. These findings demonstrate the potential of biochar-based electrodes as sustainable, cost-effective alternatives for heavy metal detection, underscoring the role of Bc in advancing green sensor technologies and environmental monitoring.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100520"},"PeriodicalIF":3.1,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-22DOI: 10.1016/j.cartre.2025.100527
Zhiyuan Shi , Xu Lyu , Yi Luo , Daigeng Wu , Wenjie Yang , Xingyu Liang
{"title":"Four-stage oxidation model of soot based on analysis of physical and mechanical properties","authors":"Zhiyuan Shi , Xu Lyu , Yi Luo , Daigeng Wu , Wenjie Yang , Xingyu Liang","doi":"10.1016/j.cartre.2025.100527","DOIUrl":"10.1016/j.cartre.2025.100527","url":null,"abstract":"<div><div>Studying the impact of ash on the oxidation process of particulates is fundamental to understanding Diesel Particulate Filter (DPF) regeneration and improving its efficiency. This study employs Thermogravimetric Analyzer (TGA), High-Resolution Transmission Electron Microscope (HRTEM), Raman spectrometer, and Atomic Force Microscope (AFM) to investigate the effects of, two archetypal metallic ash constituents, CuSO<sub>4</sub> and CaSO<sub>4</sub>, on the physicochemical and mechanical properties during the particulate oxidation process. Finally, based on the experimental results, the classical four-stage oxidation model of particulates is revised to propose a more specific oxidation process. These investigative outcomes bestow profound comprehension into the oxidative behavior of particulates and proffer beneficial theoretical direction for the forthcoming management and mitigation of engine carbon particulates.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100527"},"PeriodicalIF":3.1,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing nitrogen doping strategies in hard carbon for enhanced performance in sodium-ion batteries","authors":"Maksat Maratov , Aibar Alpysbayev , Dilshat Abduakhitov , Bauyrzhan Myrzakhmetov , Kenes Kudaibergenov , Zhumabay Bakenov , Seung-Taek Myung , Aishuak Konarov","doi":"10.1016/j.cartre.2025.100523","DOIUrl":"10.1016/j.cartre.2025.100523","url":null,"abstract":"<div><div>Sodium-ion batteries are emerging as a promising and cost-effective alternative to lithium-ion batteries for large-scale applications. Among various anode materials, hard carbon has become a preferred choice for sodium-ion batteries. This study focuses on synthesizing hard carbon from bio-waste cherries and investigating the impact of nitrogen doping strategies on its electrochemical performance. Using urea as a precursor, post nitrogen doping was found to enhance the structural properties of hard carbon, facilitating better penetration of sodium ions into its internal structure. The results revealed that post nitrogen doping significantly improved the capacity of hard carbon, increasing it from 206 mAh g⁻¹ to 274 mAh g⁻¹ at a current density of 20 mA g⁻¹. Additionally, the post nitrogen-doped hard carbon demonstrated an impressive capacity of 110 mAh g⁻¹ at a high current density of 1 A g⁻¹. These findings underscore the potential of nitrogen doping in optimizing hard carbon for sodium-ion battery applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100523"},"PeriodicalIF":3.1,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flash graphene: From synthesis to potential applications","authors":"Godwin Mong Kalu-Uka , Agnidip Sarkar , Abraham Chinedu Kalu-Uka , Sandeep Kumar","doi":"10.1016/j.cartre.2025.100524","DOIUrl":"10.1016/j.cartre.2025.100524","url":null,"abstract":"<div><div>The global impact of the poor waste management practices in developing countries has begun to weary the developed nations of the world. For this reason, researchers have striven to provide sustainable solutions to the waste management crisis by improving the effectiveness of the existing waste management systems and developing new methodologies for converting waste into energy and useful materials. The latest breakthrough in the conversion of waste into useful materials is the synthesis of flash graphene through flash joule heating technology. However, studies on flash graphene have remained a niche research area for a few authors, despite the unique properties and potential applications of flash graphene. Though this situation could be attributed to a number of factors, the authors believe that more researchers would be motivated to study the synthesis and applications of flash graphene if there were sufficient review articles on the subject matter. To this end, the authors have comprehensively reviewed the existing literature, with the primary objective of systematically discussing the research findings on flash graphene synthesis, characterisation and applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100524"},"PeriodicalIF":3.1,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-16DOI: 10.1016/j.cartre.2025.100522
Veronika Yu. Yurova, Daniil Yu. Piarnits, Ivan V. Moskalenko, Igor S. Smirnov, Iuliia V. Maltceva, Vasiliy A. Krylov, Vera E. Sitnikova, Evgeny Smirnov, Ekaterina V. Skorb
{"title":"Synthesis of g-C3N4 Triazine-structure via modified low-temperature polycondensation of Melamine-Barbiturate","authors":"Veronika Yu. Yurova, Daniil Yu. Piarnits, Ivan V. Moskalenko, Igor S. Smirnov, Iuliia V. Maltceva, Vasiliy A. Krylov, Vera E. Sitnikova, Evgeny Smirnov, Ekaterina V. Skorb","doi":"10.1016/j.cartre.2025.100522","DOIUrl":"10.1016/j.cartre.2025.100522","url":null,"abstract":"<div><div>A novel supramolecular precursor strategy was developed for the low-temperature synthesis of triazine-structured graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). The supramolecular assembly of melamine and barbituric acid enables a significant reduction in the synthesis temperature—from the conventional 550 °C to 350 °C—and shortens processing time to just 60 min. Structural and physicochemical characterization (XRD, FTIR, SEM, and BET) confirms the formation of a triazine-based g-C<sub>3</sub>N<sub>4</sub> framework with a specific surface area of 17.6 m<sup>2</sup>/g and a uniform mesoporous structure (∼3.5 nm). Photocatalytic experiments demonstrate efficient degradation of organic dyes under visible-light irradiation (λ = 365 and 405 nm), indicating the material's enhanced photoactivity. Scanning vibrating electrode technique (SVET) measurements further reveal a clear photoinduced ionic current response under both excitation wavelengths, supporting the presence of defect-associated energy states within the bandgap and confirming the ability of CN-MB-350 to function as a visible-light-responsive semiconductor. The proposed method offers a cost-effective and energy-saving alternative to conventional g-C<sub>3</sub>N<sub>4</sub> synthesis and expands the potential for structural tuning of carbon nitride materials via precursor engineering.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100522"},"PeriodicalIF":3.1,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon TrendsPub Date : 2025-05-14DOI: 10.1016/j.cartre.2025.100521
Amirhosein Riahi , Julie Muretta , Richard LaDouceur
{"title":"Advancing CO2 separation and capture in post-combustion scenarios using resonant vibration techniques","authors":"Amirhosein Riahi , Julie Muretta , Richard LaDouceur","doi":"10.1016/j.cartre.2025.100521","DOIUrl":"10.1016/j.cartre.2025.100521","url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) requires specialized capture methods for effective mitigation. Biochar has garnered significant interest as a versatile, porous solid adsorbent due to its cost-effective production, thermal, chemical, and mechanical stability, and minimal environmental impact. However, its small surface area and diffusional issues result in slow CO<sub>2</sub> adsorption kinetics and limited capacity, hindering widespread adoption. To address this limitation, most research in the field focuses on chemical approaches to enhance biochar's adsorption capabilities. While these methods are effective, concerns remain about their overall carbon neutrality and environmental sustainability due to the production of toxic chemicals. In this work, an innovative Process Intensification technique—Low-Frequency High-Amplitude (LFHA) resonant vibratory mixing—is proposed to enhance selective CO<sub>2</sub> adsorption onto hemp-derived biochar under simulated post-combustion conditions (16 % V/V CO<sub>2</sub>/N<sub>2</sub>) representative of coal-fired power plant exhaust streams. By optimizing biochar's physical properties and facilitating CO<sub>2</sub> transport processes, the resonant vibrations are shown to increase the CO<sub>2</sub> selectivity factor by 25.49 %, from 9.61 in non-vibrational adsorption to 12.07 in vibrational adsorption. The calculated CO<sub>2</sub> working dynamic capacity from selective adsorption closely corresponded to the equilibrium capacity obtained through isothermal measurements at room temperature (25 °C) and a partial pressure of 0.16. The values were 9.12 % lower for non-vibrational adsorption and 20.64 % lower for vibrational adsorption, thereby demonstrating the efficiency of the developed method. The microstructure and the textural properties of biochar have been evaluated by means of Scanning Electron Microscopy (SEM), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), and Raman spectroscopy. Experimental results also indicate the reusability and regeneration of biochar for cyclic CO<sub>2</sub> adsorption through two distinct methods.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100521"},"PeriodicalIF":3.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144070708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}