Carbon Trends最新文献

筛选
英文 中文
Enhancement of CO2 Adsorption Kinetics onto Carbon by Low-Frequency High Amplitude Resonant Vibrations 低频高振幅共振增强二氧化碳在碳上的吸附动力学
Carbon Trends Pub Date : 2024-05-09 DOI: 10.1016/j.cartre.2024.100361
Amirhosein Riahi , Ethan Heggem , Mario Caccia , Richard LaDouceur
{"title":"Enhancement of CO2 Adsorption Kinetics onto Carbon by Low-Frequency High Amplitude Resonant Vibrations","authors":"Amirhosein Riahi ,&nbsp;Ethan Heggem ,&nbsp;Mario Caccia ,&nbsp;Richard LaDouceur","doi":"10.1016/j.cartre.2024.100361","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100361","url":null,"abstract":"<div><p>Due to the excessive consumption of fossil fuels, which leads to significant greenhouse gas emissions and rapid climate change, it is crucial to develop various carbon capture and sequestration strategies. CO<sub>2</sub> sequestration in solid, porous adsorbents like low-cost biochar has emerged as a promising approach to achieve this goal. However, slow adsorption kinetics are one of the issues that limit the widespread use of this approach. While the characteristics of the biochar are important and impact CO<sub>2</sub> adsorption, the conditions under which adsorption occurs are equally critical. In this work, a novel strategy is proposed to accelerate the CO<sub>2</sub> uptake rate on carbon adsorbents by utilizing Low-Frequency High Amplitude resonant vibratory mixing during the adsorption process. With this approach, the rate of adsorption (characterized by the adsorption rate constant) exhibits an increase of 46.6% and 91.3%, as calculated by two different kinetic models: the Weber and Morris model, and the Pseudo-First-Order model. Experimental observations indicate that adsorption kinetics have a mixed control between external/internal diffusion and the physisorption process. Resonant vibrations enhance system energy, promoting collisions between CO<sub>2</sub> molecules and carbon surfaces, subsequently improving CO<sub>2</sub> transport and surface/gas interactions, facilitating the adsorption process and thus leading to enhanced kinetic rates. Furthermore, an analysis of variance determined the sensitivity of CO<sub>2</sub> uptake to several operating parameters associated with the resonant vibrations. This analysis indicated that the adsorption of CO<sub>2</sub> is most sensitive to the level of fill of the adsorption vessel and the time exposed to resonant vibrations.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000427/pdfft?md5=84a407f558efb99d306a37840dfadc5c&pid=1-s2.0-S2667056924000427-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenated graphene systems: A novel growth and hydrogenation process 氢化石墨烯系统:新型生长和氢化工艺
Carbon Trends Pub Date : 2024-05-07 DOI: 10.1016/j.cartre.2024.100360
Samuel Escobar Veras , Ernesto Espada , Solimar Collazo , Marcel Grau , Rajesh Katiyar , Vladimir I. Makarov , Brad R. Weiner , Gerardo Morell
{"title":"Hydrogenated graphene systems: A novel growth and hydrogenation process","authors":"Samuel Escobar Veras ,&nbsp;Ernesto Espada ,&nbsp;Solimar Collazo ,&nbsp;Marcel Grau ,&nbsp;Rajesh Katiyar ,&nbsp;Vladimir I. Makarov ,&nbsp;Brad R. Weiner ,&nbsp;Gerardo Morell","doi":"10.1016/j.cartre.2024.100360","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100360","url":null,"abstract":"<div><p>Octadecylphosphonic acid self-assembled monolayers were used as a combined carbon and hydrogen source to grow graphene films on sapphire substrates via hot filament chemical vapor deposition. The functionalized substrates were sealed with a thin Cu film and heated to 950°C under Ar flow. After synthesis, the Cu was etched away. The graphene samples then underwent a hydrogenation treatment in the same reactor setup, exposed to a CH<sub>4</sub>/H<sub>2</sub> gas mixture at 820°C for 2 hours. The structure and properties of the graphene films before and after hydrogenation were characterized. Raman spectroscopy was employed to probe the defect-related bands and C-H bonding. X-ray diffraction provided insights into the crystalline structure and interlayer spacing. The ferromagnetic response was measured using a PPMS system across a range of temperatures and magnetic fields. XPS was used to assess the chemical composition and bonding. This multi-step process enabled a detailed evaluation of the novel synthesis protocol and its effects on the resulting hydrogenated graphene material.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000415/pdfft?md5=f0c52cad96fc046310457d1ccb58b371&pid=1-s2.0-S2667056924000415-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors 利用杰克木生物炭合成活性炭,用于高性能生物质衍生复合双层超级电容器
Carbon Trends Pub Date : 2024-05-01 DOI: 10.1016/j.cartre.2024.100359
T.M.W.J. Bandara , A.M.B.S. Alahakoon , B.-E. Mellander , I. Albinsson
{"title":"Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors","authors":"T.M.W.J. Bandara ,&nbsp;A.M.B.S. Alahakoon ,&nbsp;B.-E. Mellander ,&nbsp;I. Albinsson","doi":"10.1016/j.cartre.2024.100359","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100359","url":null,"abstract":"<div><p>In this study, the electrochemical properties of bioderived activated carbon-based electrodes for supercapacitors formed using a sintered ceramic binder were investigated. Activated carbon derived from Jack wood tree (<em>Artocarpus heterophyllus</em>) with variable amounts of TiO<sub>2</sub> nanoparticles as a binder, were used as electrodes in order to get good, activated carbon films on FTO substrates. No other binders were used in this study since most conventional binders devastate the electrical conductivity in the films. Furthermore, TiO<sub>2</sub> has higher temperature tolerance compared to polymeric binders thus the electrode prepared can be used in wider applications. A series of electrochemical double-layer capacitors were fabricated and characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The supercapacitors prepared showed double-layer capacitive behavior. The electrodes that contain 90 % activated carbon and 10 % TiO<sub>2</sub> show optimum performance along with an impressive specific capacitance of 147 F g<sup>−1</sup> at 2 mV s<sup>−1</sup> scan rate. This supercapacitor exhibits a power density of 68.5 W kg<sup>−1</sup> while the energy density is 8.02 Wh kg<sup>−1</sup>. When the power density is as high as 1186.51 W kg<sup>−1</sup> the energy density drops to 5.71 Wh kg<sup>−1</sup>. According to cyclic voltammetry measurements taken for 1000 cycles, the supercapacitor shows excellent cycle stability without any traces of capacitance drop.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000403/pdfft?md5=087abb28222a21382885b36f98cb089e&pid=1-s2.0-S2667056924000403-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical evaluation of hybrid La2CoCrO6/Co3O4/rGO composite for enhanced supercapacitor performance 用于增强超级电容器性能的混合 La2CoCrO6/Co3O4/rGO 复合材料的电化学评估
Carbon Trends Pub Date : 2024-04-26 DOI: 10.1016/j.cartre.2024.100358
Deeksha Nagpal , Anup Singh , Ajay Vasishth , Ranbir Singh , Ashok Kumar
{"title":"Electrochemical evaluation of hybrid La2CoCrO6/Co3O4/rGO composite for enhanced supercapacitor performance","authors":"Deeksha Nagpal ,&nbsp;Anup Singh ,&nbsp;Ajay Vasishth ,&nbsp;Ranbir Singh ,&nbsp;Ashok Kumar","doi":"10.1016/j.cartre.2024.100358","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100358","url":null,"abstract":"<div><p>The present work focuses on the synthesis of hybrid La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite via solvothermal technique for supercapacitor application. X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda analyses are employed to assess phase structure, morphology, chemical state, surface area, and porosity of synthesized materials, respectively. The formation of mesoporous spheres is confirmed through FESEM and BET analysis. The inclusion of redox additive KMnO<sub>4</sub> in KOH electrolyte enhances the accessibility of electrochemical sites in the mesoporous spheres of the La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO electrode, resulting in excellent charge storage. Electrochemical analysis of the La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub> exhibits specific capacitance of 633.2 F/g at 2 A/g in a redox electrolyte (6 M KOH + 0.05 M KMnO<sub>4</sub>) with capacitive retention of approximately 81 % over 5000 cycles. Furthermore, the addition of rGO improves the overall performance of La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite (763.9 F/g at 2 A/g with capacitive retention of approximately 86 %). The electrochemical analysis of hybrid La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite showed improved performance, owing to the synergy of double perovskite (La<sub>2</sub>CoCrO<sub>6</sub>), cobalt oxide (Co<sub>3</sub>O<sub>4</sub>), and reduced graphene oxide (rGO). These findings suggest promising applications for the material in advanced energy storage devices.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000397/pdfft?md5=47f22b67660b774f7edb08b0e629ba00&pid=1-s2.0-S2667056924000397-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel bowl-like or capped carbon with a low carbon footprint as electrode material in EDLCs 将低碳足迹的新型碗状或封盖碳作为 EDLC 的电极材料
Carbon Trends Pub Date : 2024-04-23 DOI: 10.1016/j.cartre.2024.100357
Satvik Anshu , Rahul R , Surbhi Priya , Alok Kumar Srivastava , Amreesh Chandra
{"title":"Novel bowl-like or capped carbon with a low carbon footprint as electrode material in EDLCs","authors":"Satvik Anshu ,&nbsp;Rahul R ,&nbsp;Surbhi Priya ,&nbsp;Alok Kumar Srivastava ,&nbsp;Amreesh Chandra","doi":"10.1016/j.cartre.2024.100357","DOIUrl":"10.1016/j.cartre.2024.100357","url":null,"abstract":"<div><p>Large surface area, excellent electrical conductivity, homogeneous structure, and extended cycling stability are desirable characteristics for energy materials. Carbon-derived structures exhibit porous structure, work well in a wide potential window, and are highly conductive. Hence, they can show enhanced rate capability and cycle life. Despite ongoing efforts, the synthesis of carbons at lower temperatures remains a challenge. In comparison, the high-temperature synthesis protocols lead to a high CO<sub>2</sub> footprint. Here, we report the synthesis of unique carbon morphologies, namely capped carbon nanostructures (CCS) and bowl-like carbon structures (BCS). Their performances are either comparable or higher than those conventionally used morphologies of carbon, such as nanospheres, microspheres, nanotubes, graphene oxide, and layered structures. The four-sided opening in BCS particles ensures higher adsorption of electrolyte ions, which is even higher than hierarchical or spherical structures. The cap formation on the CCS acts like an additional layer on top of the sphere. Further, the CCS is arranged in a sequential honeycomb array, which leads to the formation of definitive channels for electrolyte diffusion. The unique carbon morphologies showed nearly ∼ 40 % increment in the specific capacitance values compared to other commonly used carbon structures. The novel morphologies also have a much lower carbon footprint, as shown by the life cycle assessment (LCA) studies.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000385/pdfft?md5=0a3d52b71675b75ab1ee0bf896b05704&pid=1-s2.0-S2667056924000385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140759293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic synthesis of borophene as a 2D electrode material with high electrocatalytic activity for use in fuel cell applications 超声波合成具有高电催化活性的二维电极材料硼吩以用于燃料电池应用
Carbon Trends Pub Date : 2024-04-20 DOI: 10.1016/j.cartre.2024.100356
Ramazan Bayat , Neslihan Esra Celik , Merve Akin , Muhammed Bekmezci , Ebru Halvaci , Tugba Simsek , Güray Kaya , Fatih Sen
{"title":"Ultrasonic synthesis of borophene as a 2D electrode material with high electrocatalytic activity for use in fuel cell applications","authors":"Ramazan Bayat ,&nbsp;Neslihan Esra Celik ,&nbsp;Merve Akin ,&nbsp;Muhammed Bekmezci ,&nbsp;Ebru Halvaci ,&nbsp;Tugba Simsek ,&nbsp;Güray Kaya ,&nbsp;Fatih Sen","doi":"10.1016/j.cartre.2024.100356","DOIUrl":"10.1016/j.cartre.2024.100356","url":null,"abstract":"<div><p>Green energy systems must be able to provide a significant proportion of the energy needed to meet the ever-increasing demand for energy. Fuel cells are a promising solution to bridge the gap in the green energy transition. This study aims to enhance the energy efficiency of fuel cells by utilizing 2D supported nanocatalysts in the anode compartment. Borophene was synthesized using the liquid phase exfoliation method to be used as a support structure due to its superior properties. To use borophene as a supporting material in methanol fuel cells, a borophene-palladium hybrid structure (Pd@Borophene) was prepared using the chemical reduction method. The scanning electron microscopy (SEM) images showed that the obtained particle had a partially formed layered structure. The electrocatalytic activity of the Pd@Borophene was investigated through anodic reactions in Direct Methanol Alcohol Fuel Cells (DMFC). Electrochemical analyses were conducted to compare the effect of borophene on Pd and Pd@borophene nanocatalysts on the anodic reaction. The anodic peak current value of methanol oxidation for Pd@borophene was found to be 24.3 mA/cm<sup>2</sup>, which is approximately four times higher than that of unsupported Pd nanoparticles. Additionally, the ratio of forward current (If) to reverse current (Ib), which serves as an indicator of catalyst poisoning, was determined to be 2.27. This study contributes significant findings to the literature by demonstrating that borophene, an advanced 2D material, can be synthesized using a low-cost liquid phase exfoliation method and can be utilized in fuel cell applications for energy generation.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000373/pdfft?md5=a2a820c82ac12532075ea3de47d37562&pid=1-s2.0-S2667056924000373-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneities across boron-doped nanocrystalline diamond films 掺硼纳米晶金刚石薄膜的不均匀性
Carbon Trends Pub Date : 2024-04-17 DOI: 10.1016/j.cartre.2024.100353
J.J. Bennett , S. Mandal , D.J. Morgan , A. Papageorgiou , O.A. Williams , G.M. Klemencic
{"title":"Inhomogeneities across boron-doped nanocrystalline diamond films","authors":"J.J. Bennett ,&nbsp;S. Mandal ,&nbsp;D.J. Morgan ,&nbsp;A. Papageorgiou ,&nbsp;O.A. Williams ,&nbsp;G.M. Klemencic","doi":"10.1016/j.cartre.2024.100353","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100353","url":null,"abstract":"<div><p>For large-scale device fabrication, information about film inhomogeneities is crucial for high fabrication yield. In this work, inhomogeneities in two-inch diameter heavily boron-doped nanocrystalline diamond (BNCD) films have been studied. Two BNCD films were grown using chemical vapour deposition (CVD) with different boron-to-carbon (B/C) ratios. Their superconducting properties were measured as a function of distance from the centre of the film. The critical temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) and critical magnetic field (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mn>2</mn></mrow></msub></math></span>) decreased radially outwards from the centre for both films. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were done on the samples to pinpoint the underlying explanation for the observed behaviour. Raman spectroscopy suggested a reduction in boron concentration and diamond purity over both films while moving radially outwards from the centre. XPS data from both films, however, did not show similar behaviours to that observed from the Raman data for the B/C ratios or diamond content. The AFM scans and SEM analysis showed a decreasing grain size further away from the film centre irrespective of the B/C ratio. This is due to the film being thinner at the edges when compared with the centre of the film. Raman analysis showed that the film with the higher B/C ratio had a higher diamond purity across the film. As expected, the film with a higher B/C ratio showed a more robust superconducting behaviour. The observed reductions in boron concentration, diamond purity, film thickness and decreased grain sizes are responsible for the diminishing superconductivity at the edge of the films.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000348/pdfft?md5=23d528cf32fda93f6f520d84c70b0da5&pid=1-s2.0-S2667056924000348-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping carbon nanotube aspect ratio, concentration and spinning in FCCVD synthesis controlled by sulphur 绘制受硫控制的 FCCVD 合成过程中的碳纳米管长宽比、浓度和纺丝图
Carbon Trends Pub Date : 2024-04-12 DOI: 10.1016/j.cartre.2024.100355
Miguel Vazquez-Pufleau , Raul Fernandez Torres , Luis Arevalo , Nabil Abomailek , Juan J. Vilatela
{"title":"Mapping carbon nanotube aspect ratio, concentration and spinning in FCCVD synthesis controlled by sulphur","authors":"Miguel Vazquez-Pufleau ,&nbsp;Raul Fernandez Torres ,&nbsp;Luis Arevalo ,&nbsp;Nabil Abomailek ,&nbsp;Juan J. Vilatela","doi":"10.1016/j.cartre.2024.100355","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100355","url":null,"abstract":"<div><p>Floating catalyst chemical vapor deposition (FCCVD) enables ultrafast synthesis of CNTs and other 1D nanoparticles and their direct assembly as macroscopic solids. The chalcogen growth promotor in FCCVD produces high aspect ratio CNTs that can aggregate in the gas phase and form an aerogel which can be continuously spun as macroscopic fibres or sheets. We study the role of sulphur in controlling CNT morphology and aggregation by synthesising CNTs under a wide range of S/C ratios (0.001 to 5 wt.%) and determining their diameter and length distributions, number concentration and form of aggregation. Increasing S/C ratio in this range increases mean number of CNT walls from 1 to 8, decreases mean length from 34 to 6 µm, but CNT number concentration remains approximately constant at 8 × 10<sup>8</sup>#/cm<sup>3</sup>. Assuming growth within the first 3 cm of the reactor, longitudinal growth rate spans 1.5- 6.5 µm/s for the different CNT morphologies, but with similar mass throughput of 700 attogram/catalyst. This indicates the amount of carbon reaching the catalyst and solidifying as CNT remains constant regardless of the sulphur available in the catalyst, suggesting the rate limiting process is not at the catalyst/promoter interface but instead in the transport of carbonaceous active precursors to the catalyst, either due to their diffusion in the gas phase or decomposition kinetics. The CNTs produced range from polymer-like, which readily bundle and form aerogels, to rod-like that do not. We include aerogelation “phase diagrams” for different CNT concentrations, aspect ratios and CNT bending stiffness.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000361/pdfft?md5=112ca4ff600992b3430094b73a8d4c5e&pid=1-s2.0-S2667056924000361-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical synthesis of nitrogen-doped graphene quantum dots and their photocatalytic hydrogen evolution application 氮掺杂石墨烯量子点的电化学合成及其光催化氢进化应用
Carbon Trends Pub Date : 2024-04-10 DOI: 10.1016/j.cartre.2024.100354
Ari Gurel , Frédéric Avignon , Guillaume Wang , Stéphanie Lau , Jean-Yves Piquemal , Christian Perruchot , Delphine Schaming
{"title":"Electrochemical synthesis of nitrogen-doped graphene quantum dots and their photocatalytic hydrogen evolution application","authors":"Ari Gurel ,&nbsp;Frédéric Avignon ,&nbsp;Guillaume Wang ,&nbsp;Stéphanie Lau ,&nbsp;Jean-Yves Piquemal ,&nbsp;Christian Perruchot ,&nbsp;Delphine Schaming","doi":"10.1016/j.cartre.2024.100354","DOIUrl":"10.1016/j.cartre.2024.100354","url":null,"abstract":"<div><p>A very simple electrochemical top-down procedure was employed to obtain pure graphene quantum dots (GQDs) in water and using only graphite as carbonaceous precursor. The graphitic structure of the GQDs has been clearly observed by high-resolution transmission electronic microscopy (HRTEM). Then, the synthesis of N-doped GQDs was allowed by the addition of ammonia in the solution. The nitrogen doping was plainly evidenced by X-ray photoelectron (XPS) and Raman spectroscopies. The role of the electrolytic solution employed during the synthesis has been also discussed. Finally, these N-doped and non-doped GQDs were further used to prepare hybrids by grafting them onto ZnO semi-conductors, and their photocatalytic properties towards water-splitting were investigated. Interestingly, a very important enhancement of the amount of dihydrogen produced was observed with N-doped GQDs, compared to ZnO alone or to hybrids prepared with non-doped GQDs.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400035X/pdfft?md5=cc99a46c9037eff8698c2409f91d7e24&pid=1-s2.0-S266705692400035X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140790606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon nanoparticle-induced cell death 碳纳米粒子诱导的细胞死亡
Carbon Trends Pub Date : 2024-04-04 DOI: 10.1016/j.cartre.2024.100352
Sandugash Myrzagali , Zhuldyz Omarova , Didar Zeitkaziyeva , Aruzhan Madet , Yingqiu Xie
{"title":"Carbon nanoparticle-induced cell death","authors":"Sandugash Myrzagali ,&nbsp;Zhuldyz Omarova ,&nbsp;Didar Zeitkaziyeva ,&nbsp;Aruzhan Madet ,&nbsp;Yingqiu Xie","doi":"10.1016/j.cartre.2024.100352","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100352","url":null,"abstract":"<div><p>Carbon nanoparticles are well-characterized as nanotubes, nano diamonds, graphene and carbon dots. Their unique properties present promising applications in nanomedicine, including drug delivery systems. However, the cell-damaging effect of carbon-based nanoparticles remains elusive. Studies on carbon-caused cell deaths are contradictory, which makes it challenging to claim their precise nature, mechanisms, and harmful dosage. Moreover, previous findings showed that immune cells are the most susceptible cells to carbon nanoparticle treatment, where cell viability differs depending on cell culture and treatment specificities. Considering the shortage of topic-specific summarized data and rising interest in carbon nanomaterials, the present review article focuses on the cytotoxicity of carbon, in terms of cell viability, and types of cell deaths induced by carbon nanoparticles.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000336/pdfft?md5=70efced011f27eee6b3661b16e333076&pid=1-s2.0-S2667056924000336-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信