{"title":"Molecular dynamics simulation of silicon doping effects on the mechanical behavior of the defective graphene nanosheet","authors":"Mahdi Kazemi, Iman jafari","doi":"10.1016/j.cartre.2025.100533","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic doping, the process of introducing guest atoms into a material's crystal lattice, has been shown to have a significant impact on the mechanical properties of nanosheets. Recently, researchers have increasingly focused on understanding and harnessing the potential of atomic doping to affect the mechanical performance of the nanoscale materials. In this paper, molecular dynamics (MD) approach implemented to describe Si doping effects on the mechanical performance of defective graphene nanosheet. MD results predicted the Si atomic doping ratio don’t disturb equilibrium phase of pristine nanostrucutre and affected the mechanical respond of them, appreciably. Numerically, the ultimate strength (US) of defective nanosheets changes from 75.23 to 61.83 GPa, by doping ratio variation from 1 % to 5 %, respectively. Also, the Young’s modulus (YM) of these samples varies from 371.51 to 341.77 GPa. These computational outputs indicated the Si doping process can be supposed as effective mechanism to manipulation of the mechanical/structural strength of defective graphene nanosheet-based samples in actual cases.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100533"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic doping, the process of introducing guest atoms into a material's crystal lattice, has been shown to have a significant impact on the mechanical properties of nanosheets. Recently, researchers have increasingly focused on understanding and harnessing the potential of atomic doping to affect the mechanical performance of the nanoscale materials. In this paper, molecular dynamics (MD) approach implemented to describe Si doping effects on the mechanical performance of defective graphene nanosheet. MD results predicted the Si atomic doping ratio don’t disturb equilibrium phase of pristine nanostrucutre and affected the mechanical respond of them, appreciably. Numerically, the ultimate strength (US) of defective nanosheets changes from 75.23 to 61.83 GPa, by doping ratio variation from 1 % to 5 %, respectively. Also, the Young’s modulus (YM) of these samples varies from 371.51 to 341.77 GPa. These computational outputs indicated the Si doping process can be supposed as effective mechanism to manipulation of the mechanical/structural strength of defective graphene nanosheet-based samples in actual cases.