Molecular dynamics simulation of silicon doping effects on the mechanical behavior of the defective graphene nanosheet

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Kazemi, Iman jafari
{"title":"Molecular dynamics simulation of silicon doping effects on the mechanical behavior of the defective graphene nanosheet","authors":"Mahdi Kazemi,&nbsp;Iman jafari","doi":"10.1016/j.cartre.2025.100533","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic doping, the process of introducing guest atoms into a material's crystal lattice, has been shown to have a significant impact on the mechanical properties of nanosheets. Recently, researchers have increasingly focused on understanding and harnessing the potential of atomic doping to affect the mechanical performance of the nanoscale materials. In this paper, molecular dynamics (MD) approach implemented to describe Si doping effects on the mechanical performance of defective graphene nanosheet. MD results predicted the Si atomic doping ratio don’t disturb equilibrium phase of pristine nanostrucutre and affected the mechanical respond of them, appreciably. Numerically, the ultimate strength (US) of defective nanosheets changes from 75.23 to 61.83 GPa, by doping ratio variation from 1 % to 5 %, respectively. Also, the Young’s modulus (YM) of these samples varies from 371.51 to 341.77 GPa. These computational outputs indicated the Si doping process can be supposed as effective mechanism to manipulation of the mechanical/structural strength of defective graphene nanosheet-based samples in actual cases.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100533"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic doping, the process of introducing guest atoms into a material's crystal lattice, has been shown to have a significant impact on the mechanical properties of nanosheets. Recently, researchers have increasingly focused on understanding and harnessing the potential of atomic doping to affect the mechanical performance of the nanoscale materials. In this paper, molecular dynamics (MD) approach implemented to describe Si doping effects on the mechanical performance of defective graphene nanosheet. MD results predicted the Si atomic doping ratio don’t disturb equilibrium phase of pristine nanostrucutre and affected the mechanical respond of them, appreciably. Numerically, the ultimate strength (US) of defective nanosheets changes from 75.23 to 61.83 GPa, by doping ratio variation from 1 % to 5 %, respectively. Also, the Young’s modulus (YM) of these samples varies from 371.51 to 341.77 GPa. These computational outputs indicated the Si doping process can be supposed as effective mechanism to manipulation of the mechanical/structural strength of defective graphene nanosheet-based samples in actual cases.
硅掺杂对缺陷石墨烯纳米片力学行为影响的分子动力学模拟
原子掺杂,即将客体原子引入材料晶格的过程,已被证明对纳米片的机械性能有重大影响。近年来,研究人员越来越关注于理解和利用原子掺杂影响纳米材料力学性能的潜力。本文采用分子动力学方法描述了Si掺杂对缺陷石墨烯纳米片力学性能的影响。MD结果表明,Si原子掺杂比例不会干扰原始纳米结构的平衡相,但对原始纳米结构的力学响应有明显影响。当掺杂比例从1%到5%变化时,缺陷纳米片的极限强度(US)分别从75.23到61.83 GPa变化。杨氏模量(YM)在371.51 ~ 341.77 GPa之间变化。这些计算结果表明,在实际情况下,硅掺杂过程可以被认为是操纵缺陷石墨烯纳米片样品的机械/结构强度的有效机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信