Nanoconfined water phase transitions in infinite graphene slits: Molecular dynamics simulations and mean-field insights

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Felipe Hawthorne, Virgília M.S. Neta, José A. Freire, Cristiano F. Woellner
{"title":"Nanoconfined water phase transitions in infinite graphene slits: Molecular dynamics simulations and mean-field insights","authors":"Felipe Hawthorne,&nbsp;Virgília M.S. Neta,&nbsp;José A. Freire,&nbsp;Cristiano F. Woellner","doi":"10.1016/j.cartre.2025.100485","DOIUrl":null,"url":null,"abstract":"<div><div>Recent experimental and computational studies have demonstrated that nanoconfinement profoundly alters the phase behavior of water, facilitating complex phase transitions at pressures and temperatures far lower than typically observed in bulk systems. When combined with adsorption, nanoconfinement substantially enhances water uptake, primarily due to condensation occurring at the onset of the isotherm curve—a phenomenon intimately related to the facilitated formation of hydrogen bond networks. In this study, we adopt a dual approach to investigate water confined within infinite graphene slits. Our Molecular Dynamics simulations reveal hysteresis across all investigated temperatures. Unlike in finite slits, where hysteresis arises due to surface tension effects at the edges, in the case of infinite slits, the hysteresis is the result of a genuine phase transition at the nanoscale. We analyze the spatial and orientational arrangements of the water molecules, demonstrating how the graphene surface promotes the formation of a hydrogen bond network in the adjacent water layers. The remarkably low pressure required for water uptake in this nano-environment is explained at the mean-field level using a simple interacting lattice model. This is attributed to the exponential dependence of the critical pressure on the adsorbate–adsorbent interaction.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100485"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experimental and computational studies have demonstrated that nanoconfinement profoundly alters the phase behavior of water, facilitating complex phase transitions at pressures and temperatures far lower than typically observed in bulk systems. When combined with adsorption, nanoconfinement substantially enhances water uptake, primarily due to condensation occurring at the onset of the isotherm curve—a phenomenon intimately related to the facilitated formation of hydrogen bond networks. In this study, we adopt a dual approach to investigate water confined within infinite graphene slits. Our Molecular Dynamics simulations reveal hysteresis across all investigated temperatures. Unlike in finite slits, where hysteresis arises due to surface tension effects at the edges, in the case of infinite slits, the hysteresis is the result of a genuine phase transition at the nanoscale. We analyze the spatial and orientational arrangements of the water molecules, demonstrating how the graphene surface promotes the formation of a hydrogen bond network in the adjacent water layers. The remarkably low pressure required for water uptake in this nano-environment is explained at the mean-field level using a simple interacting lattice model. This is attributed to the exponential dependence of the critical pressure on the adsorbate–adsorbent interaction.
无限石墨烯狭缝中的纳米限水相变:分子动力学模拟和平均场见解
最近的实验和计算研究表明,纳米约束深刻地改变了水的相行为,促进了复杂的相变,其压力和温度远低于通常在体系统中观察到的。当与吸附相结合时,纳米约束大大提高了水的吸收率,这主要是由于等温线曲线开始时发生的冷凝,这一现象与促进氢键网络的形成密切相关。在这项研究中,我们采用双重方法来研究无限石墨烯狭缝中的水。我们的分子动力学模拟揭示了所有研究温度下的滞后现象。与有限狭缝不同,在有限狭缝中,由于边缘的表面张力效应而产生迟滞,在无限狭缝的情况下,迟滞是纳米尺度上真正相变的结果。我们分析了水分子的空间和方向排列,展示了石墨烯表面如何促进相邻水层中氢键网络的形成。在这种纳米环境中,水吸收所需的非常低的压力可以用简单的相互作用晶格模型在平均场水平上解释。这归因于临界压力对吸附剂-吸附剂相互作用的指数依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信