Wilson Nieto , Johnny Chimborazo , Hidetsugu Shiozawa , Thomas Pichler , Paola Ayala , Dario Niebieskikwiat
{"title":"双壁碳纳米管内铁基铁磁纳米团簇的磁耦合","authors":"Wilson Nieto , Johnny Chimborazo , Hidetsugu Shiozawa , Thomas Pichler , Paola Ayala , Dario Niebieskikwiat","doi":"10.1016/j.cartre.2025.100483","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the magnetic properties of hybrids of carbon nanotubes is an intriguing matter that offers a vastly unexplored playground for fundamental research and promising applications. The magnetic properties of bundles of double-wall carbon nanotubes encapsulating cementite ferromagnetic nanoclusters (of <span><math><mo>∼</mo></math></span> 3–4 nm in length) are here studied. VSM magnetometry shows clear evidence of interparticle magnetic interactions and a large interface exchange coupling of the nanoclusters with the carbon matrix, characterized by a surface anisotropy field <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>∼</mo><mn>67</mn></mrow></math></span> kOe. Using a well-known measurement protocol, a magnetic activation volume for magnetization reversal was estimated as <span><math><mrow><mo>∼</mo><mn>420</mn><mspace></mspace><msup><mrow><mi>nm</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. This large volume involves around 270 cementite nanoparticles mutually coupled through the conduction electrons of the nanotubes, which provide the ground for a large magnetic correlation length, thus favoring their possible application in spintronic devices.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100483"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic coupling of iron-based ferromagnetic nanoclusters encapsulated inside double-wall carbon nanotubes\",\"authors\":\"Wilson Nieto , Johnny Chimborazo , Hidetsugu Shiozawa , Thomas Pichler , Paola Ayala , Dario Niebieskikwiat\",\"doi\":\"10.1016/j.cartre.2025.100483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the magnetic properties of hybrids of carbon nanotubes is an intriguing matter that offers a vastly unexplored playground for fundamental research and promising applications. The magnetic properties of bundles of double-wall carbon nanotubes encapsulating cementite ferromagnetic nanoclusters (of <span><math><mo>∼</mo></math></span> 3–4 nm in length) are here studied. VSM magnetometry shows clear evidence of interparticle magnetic interactions and a large interface exchange coupling of the nanoclusters with the carbon matrix, characterized by a surface anisotropy field <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>∼</mo><mn>67</mn></mrow></math></span> kOe. Using a well-known measurement protocol, a magnetic activation volume for magnetization reversal was estimated as <span><math><mrow><mo>∼</mo><mn>420</mn><mspace></mspace><msup><mrow><mi>nm</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. This large volume involves around 270 cementite nanoparticles mutually coupled through the conduction electrons of the nanotubes, which provide the ground for a large magnetic correlation length, thus favoring their possible application in spintronic devices.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"19 \",\"pages\":\"Article 100483\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056925000331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic coupling of iron-based ferromagnetic nanoclusters encapsulated inside double-wall carbon nanotubes
Understanding the magnetic properties of hybrids of carbon nanotubes is an intriguing matter that offers a vastly unexplored playground for fundamental research and promising applications. The magnetic properties of bundles of double-wall carbon nanotubes encapsulating cementite ferromagnetic nanoclusters (of 3–4 nm in length) are here studied. VSM magnetometry shows clear evidence of interparticle magnetic interactions and a large interface exchange coupling of the nanoclusters with the carbon matrix, characterized by a surface anisotropy field kOe. Using a well-known measurement protocol, a magnetic activation volume for magnetization reversal was estimated as . This large volume involves around 270 cementite nanoparticles mutually coupled through the conduction electrons of the nanotubes, which provide the ground for a large magnetic correlation length, thus favoring their possible application in spintronic devices.