AstrodynamicsPub Date : 2024-02-01DOI: 10.1007/s42064-023-0172-6
Weidong Yin, Yu Shi, Leizheng Shu, Yang Gao
{"title":"Autonomous navigation of an asteroid orbiter enhanced by a beacon satellite in a high-altitude orbit","authors":"Weidong Yin, Yu Shi, Leizheng Shu, Yang Gao","doi":"10.1007/s42064-023-0172-6","DOIUrl":"10.1007/s42064-023-0172-6","url":null,"abstract":"<div><p>This study aims to assess the autonomous navigation performance of an asteroid orbiter enhanced using an inter-satellite link to a beacon satellite. Autonomous navigation includes the orbit determination of the orbiter and beacon, and asteroid gravity estimation without any ground station support. Navigation measurements were acquired using satellite-to-satellite tracking (SST) and optical observation of asteroid surface landmarks. This study presents a new orbiter–beacon SST scheme, in which the orbiter circumnavigates the asteroid in a low-altitude strongly-perturbed orbit, and the beacon remains in a high-altitude weakly-perturbed orbit. We used Asteroid 433 Eros as an example, and analyzed and designed low- and high-altitude orbits for the orbiter and beacon. The navigation measurements were precisely modeled, extended Kalman filters were devised, and observation configuration was analyzed using the Cramer–Rao lower bound (CRLB). Monte Carlo simulations were carried out to assess the effects of the orbital inclination and altitudes of the orbiter and beacon as key influencing factors. The simulation results showed that the proposed SST scheme was an effective solution for enhancing the autonomous navigation performance of the orbiter, particularly for improving the accuracy of gravity estimation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"8 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139686685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AstrodynamicsPub Date : 2023-10-26DOI: 10.1007/s42064-023-0177-1
Dun Li, Zhi-Hui Li, Yue-Long He, Jing-Jiang Chu, Yu Jiang
{"title":"Debris falling forecast method for spacecraft disintegrating separation","authors":"Dun Li, Zhi-Hui Li, Yue-Long He, Jing-Jiang Chu, Yu Jiang","doi":"10.1007/s42064-023-0177-1","DOIUrl":"10.1007/s42064-023-0177-1","url":null,"abstract":"<div><p>Large spacecraft fall out of orbit and re-enter the atmosphere at the end of their lifetime, and they can break up into small debris upon re-entry. The spacecraft debris generated by the disintegration may lead to high risk when the surviving debris reaches the ground. One way to reduce the damage risk of spacecraft is to simulate the spacecraft disintegration process and accurately predict the falling area. Aerodynamics seriously affects the reentering process, especially in the continuous flow regime. Aerodynamic force and heat are the main factors leading to debris disintegration. High dynamic pressure leads to sharp changes in attitude and complex trajectories during debris fall. A numerical method based on an unstructured Cartesian grid was developed to simulate the disintegrating separation problem by coupling the Navier-Stokes equation and the six-degree-of-freedom trajectory equation. A method combining the numerical method for dynamic processes with numerical simulation based on a static aerodynamic/dynamic characteristic database was developed for forecasting the falling area. Spacecraft disintegrating separation from 60 km was simulated using the method, and the multibody aerodynamic interference and the separation trajectory were predicted. The falling process was forecast by a numerical simulation method based on the static aerodynamic database/dynamic characteristic database when the debris went out of the influence domain. This method has good forecasting efficiency while considering the aerodynamic interference, making it a valuable method for forecasting disintegrating separation and falling debris.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"455 - 463"},"PeriodicalIF":6.1,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AstrodynamicsPub Date : 2023-10-26DOI: 10.1007/s42064-023-0182-4
Yongjie Liu, Yu Jiang, Hengnian Li, Zongbo Huyan, Hongchao Wang
{"title":"Determining origins of satellite breakup events in LEO region","authors":"Yongjie Liu, Yu Jiang, Hengnian Li, Zongbo Huyan, Hongchao Wang","doi":"10.1007/s42064-023-0182-4","DOIUrl":"10.1007/s42064-023-0182-4","url":null,"abstract":"<div><p>Currently, a surge in the number of spacecraft and fragments is observed, leading to more frequent breakup events in low Earth orbits (LEOs). The causes of these events are being identified, and specific triggers, such as collisions or explosions, are being examined for their importance to space traffic management. Backward propagation methods were employed to trace the origins of these types of breakup events. Simulations were conducted using the NASA standard breakup model, and satellite Hitomi’s breakup was analyzed. Kullback-Leibler (KL) divergences, Euclidean 2-norms, and Jensen-Shannon (JS) divergences were computed to deduce potential types of breakups and the associated fragmentation masses. In the simulated case, a discrepancy of 22.12 s between the estimated and actual time was noted. Additionally, the breakup of the Hitomi satellite was estimated to have occurred around UTC 1:49:26.4 on March 26, 2016. This contrasts with the epoch provided by the Joint Space Operation Center, which was estimated to be at 1:42 UTC ± 11 min. From the findings, it was suggested that the techniques introduced in the study can be effectively used to trace the origins of short-term breakup events and to deduce the types of collisions and fragmentation masses under certain conditions.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"465 - 476"},"PeriodicalIF":6.1,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AstrodynamicsPub Date : 2023-10-26DOI: 10.1007/s42064-023-0187-z
Yu Jiang, Roberto Armellin, Zhihui Li
{"title":"Message from the Guest Editors of the Special Issue on Space Traffic Management","authors":"Yu Jiang, Roberto Armellin, Zhihui Li","doi":"10.1007/s42064-023-0187-z","DOIUrl":"10.1007/s42064-023-0187-z","url":null,"abstract":"","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"381 - 381"},"PeriodicalIF":6.1,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AstrodynamicsPub Date : 2023-08-24DOI: 10.1007/s42064-023-0168-2
Nicholas Owen Ralph, Alexandre Marcireau, Saeed Afshar, Nicholas Tothill, André van Schaik, Gregory Cohen
{"title":"Astrometric calibration and source characterisation of the latest generation neuromorphic event-based cameras for space imaging","authors":"Nicholas Owen Ralph, Alexandre Marcireau, Saeed Afshar, Nicholas Tothill, André van Schaik, Gregory Cohen","doi":"10.1007/s42064-023-0168-2","DOIUrl":"10.1007/s42064-023-0168-2","url":null,"abstract":"<div><p>As an emerging approach to space situational awareness and space imaging, the practical use of an event-based camera (EBC) in space imaging for precise source analysis is still in its infancy. The nature of event-based space imaging and data collection needs to be further explored to develop more effective event-based space imaging systems and advance the capabilities of event-based tracking systems with improved target measurement models. Moreover, for event measurements to be meaningful, a framework must be investigated for EBC calibration to project events from pixel array coordinates in the image plane to coordinates in a target resident space object’s reference frame. In this paper, the traditional techniques of conventional astronomy are reconsidered to properly utilise the EBC for space imaging and space situational awareness. This paper presents the techniques and systems used for calibrating an EBC for reliable and accurate measurement acquisition. These techniques are vital in building event-based space imaging systems capable of real-world space situational awareness tasks. By calibrating sources detected using the EBC, the spatiotemporal characteristics of detected sources or “event sources” can be related to the photometric characteristics of the underlying astrophysical objects. Finally, these characteristics are analysed to establish a foundation for principled processing and observing techniques which appropriately exploit the capabilities of the EBC.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"415 - 443"},"PeriodicalIF":6.1,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-induced collision risk of the Starlink constellation based on long-term orbital evolution analysis","authors":"Wei Zhang, Xiuhong Wang, Wen Cui, Zhi Zhao, Sirui Chen","doi":"10.1007/s42064-023-0171-7","DOIUrl":"10.1007/s42064-023-0171-7","url":null,"abstract":"<div><p>The deployment of mega constellations has had a significant effect on the compounding space debris environment, increasing the number of on-orbit objects in all conditions and damaging the stability of the space debris environment. The increased density of space objects is associated with an increased risk of on-orbit collisions. Collision risk exists not only between a mega constellation and the space debris environment but also inside a mega constellation. In this study, we used the Starlink constellation to investigate the self-induced collision risk caused by malfunctioning satellites. First, we analyzed the conjunction condition between malfunctioning and operative satellites based on long-term orbital evolution characteristics. The collision probability was then calculated based on the conjunction analysis results. The results show that malfunctioning satellites in Phase 1 cause an 86.2% self-induced collision probability based on a malfunctioning rate of 1%, which is close to the collision probability caused by objects larger than 6 cm during five years of service. Therefore, self-induced collisions are another important risk factor for the Starlink constellation.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"445 - 453"},"PeriodicalIF":6.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Safe-event pruning in spacecraft conjunction management","authors":"Sébastien Henry, Roberto Armellin, Thibault Gateau","doi":"10.1007/s42064-023-0165-5","DOIUrl":"10.1007/s42064-023-0165-5","url":null,"abstract":"<div><p>Spacecraft conjunction management plays a crucial role in the mitigation of space collisions. When a conjunction event occurs, resources and time are spent analyzing, planning, and potentially maneuvering the spacecraft. This work contributes to a subpart of the problem: Confidently identifying events that will not lead to a high collision probability, and therefore do not require further investigation. The method reduces the dimensionality of the data via principal component analysis (PCA) on a subset of features. High-risk regions are then determined by clustering the projected data, and events that do not belong to a high-risk cluster are pruned. A genetic algorithm (GA) is developed to optimize the number of clusters and feature selection of the model. Furthermore, an ensemble learning framework is proposed to combine the suboptimal models for better generalization. The results show that the first set of parameters pruned approximately 50% of the events in the testing set with no false negatives, whereas the second set of parameters pruned 70% of the events and maintained a near-perfect recall. These results could benefit the optimization of operational resources and allow operators to focus better on the events of interest.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 4","pages":"401 - 413"},"PeriodicalIF":6.1,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AstrodynamicsPub Date : 2023-07-05DOI: 10.1007/s42064-023-0166-4
Edoardo Ciccarelli, Nicola Baresi
{"title":"Covariance analysis of periodic and quasi-periodic orbits around Phobos with applications to the Martian Moons eXploration mission","authors":"Edoardo Ciccarelli, Nicola Baresi","doi":"10.1007/s42064-023-0166-4","DOIUrl":"10.1007/s42064-023-0166-4","url":null,"abstract":"<div><p>Understanding the internal composition of a celestial body is fundamental for formulating theories regarding its origin. Deep knowledge of the distribution of mass under the body’s crust can be achieved by analyzing its moments of inertia and gravity field. In this regard, the two moons of the Martian system have not yet been closely studied and continue to pose questions regarding their origin to the space community; thus, they deserve further characterization. The Martian Moons eXploration mission will be the first of its kind to sample and study Phobos over a prolonged period. This study aims to demonstrate that the adoption of periodic and quasi-periodic retrograde trajectories would be beneficial for the scientific value of the mission. Here, a covariance analysis was implemented to compare the estimation of high-order gravitational field coefficients from different orbital geometries and for different sets of processed observables. It was shown that the adoption of low-altitude non-planar quasi-satellite orbits would help to refine the knowledge of the moon’s libration angle and gravitational field.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"7 3","pages":"363 - 379"},"PeriodicalIF":6.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0166-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50009544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}