{"title":"通过高空轨道上的信标卫星加强小行星轨道器的自主导航","authors":"Weidong Yin, Yu Shi, Leizheng Shu, Yang Gao","doi":"10.1007/s42064-023-0172-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to assess the autonomous navigation performance of an asteroid orbiter enhanced using an inter-satellite link to a beacon satellite. Autonomous navigation includes the orbit determination of the orbiter and beacon, and asteroid gravity estimation without any ground station support. Navigation measurements were acquired using satellite-to-satellite tracking (SST) and optical observation of asteroid surface landmarks. This study presents a new orbiter–beacon SST scheme, in which the orbiter circumnavigates the asteroid in a low-altitude strongly-perturbed orbit, and the beacon remains in a high-altitude weakly-perturbed orbit. We used Asteroid 433 Eros as an example, and analyzed and designed low- and high-altitude orbits for the orbiter and beacon. The navigation measurements were precisely modeled, extended Kalman filters were devised, and observation configuration was analyzed using the Cramer–Rao lower bound (CRLB). Monte Carlo simulations were carried out to assess the effects of the orbital inclination and altitudes of the orbiter and beacon as key influencing factors. The simulation results showed that the proposed SST scheme was an effective solution for enhancing the autonomous navigation performance of the orbiter, particularly for improving the accuracy of gravity estimation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous navigation of an asteroid orbiter enhanced by a beacon satellite in a high-altitude orbit\",\"authors\":\"Weidong Yin, Yu Shi, Leizheng Shu, Yang Gao\",\"doi\":\"10.1007/s42064-023-0172-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to assess the autonomous navigation performance of an asteroid orbiter enhanced using an inter-satellite link to a beacon satellite. Autonomous navigation includes the orbit determination of the orbiter and beacon, and asteroid gravity estimation without any ground station support. Navigation measurements were acquired using satellite-to-satellite tracking (SST) and optical observation of asteroid surface landmarks. This study presents a new orbiter–beacon SST scheme, in which the orbiter circumnavigates the asteroid in a low-altitude strongly-perturbed orbit, and the beacon remains in a high-altitude weakly-perturbed orbit. We used Asteroid 433 Eros as an example, and analyzed and designed low- and high-altitude orbits for the orbiter and beacon. The navigation measurements were precisely modeled, extended Kalman filters were devised, and observation configuration was analyzed using the Cramer–Rao lower bound (CRLB). Monte Carlo simulations were carried out to assess the effects of the orbital inclination and altitudes of the orbiter and beacon as key influencing factors. The simulation results showed that the proposed SST scheme was an effective solution for enhancing the autonomous navigation performance of the orbiter, particularly for improving the accuracy of gravity estimation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-023-0172-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0172-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在评估利用与信标卫星的卫星间连接增强的小行星轨道器的自主导航性能。自主导航包括轨道器和信标卫星的轨道确定以及小行星重力估算,无需任何地面站支持。导航测量是利用卫星对卫星跟踪(SST)和对小行星表面地标的光学观测获得的。本研究提出了一种新的轨道器-信标 SST 方案,其中轨道器在低空强扰动轨道上环绕小行星,信标则保持在高空弱扰动轨道上。我们以小行星 433 Eros 为例,分析并设计了轨道器和信标的低空和高空轨道。对导航测量进行了精确建模,设计了扩展卡尔曼滤波器,并使用克拉默-拉奥下界(CRLB)对观测配置进行了分析。进行了蒙特卡洛模拟,以评估轨道器和信标的轨道倾角和高度这些关键影响因素的作用。模拟结果表明,拟议的 SST 方案是提高轨道器自主导航性能的有效解决方案,特别是在提高重力估算精度方面。
Autonomous navigation of an asteroid orbiter enhanced by a beacon satellite in a high-altitude orbit
This study aims to assess the autonomous navigation performance of an asteroid orbiter enhanced using an inter-satellite link to a beacon satellite. Autonomous navigation includes the orbit determination of the orbiter and beacon, and asteroid gravity estimation without any ground station support. Navigation measurements were acquired using satellite-to-satellite tracking (SST) and optical observation of asteroid surface landmarks. This study presents a new orbiter–beacon SST scheme, in which the orbiter circumnavigates the asteroid in a low-altitude strongly-perturbed orbit, and the beacon remains in a high-altitude weakly-perturbed orbit. We used Asteroid 433 Eros as an example, and analyzed and designed low- and high-altitude orbits for the orbiter and beacon. The navigation measurements were precisely modeled, extended Kalman filters were devised, and observation configuration was analyzed using the Cramer–Rao lower bound (CRLB). Monte Carlo simulations were carried out to assess the effects of the orbital inclination and altitudes of the orbiter and beacon as key influencing factors. The simulation results showed that the proposed SST scheme was an effective solution for enhancing the autonomous navigation performance of the orbiter, particularly for improving the accuracy of gravity estimation.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.