Ghulam Jaffer, Rameez A. Malik, Elias Aboutanios, Nazish Rubab, Ronnie Nader, Hans U. Eichelberger, Guy A. E. Vandenbosch
{"title":"Air traffic monitoring using optimized ADS-B CubeSat constellation","authors":"Ghulam Jaffer, Rameez A. Malik, Elias Aboutanios, Nazish Rubab, Ronnie Nader, Hans U. Eichelberger, Guy A. E. Vandenbosch","doi":"10.1007/s42064-023-0189-x","DOIUrl":null,"url":null,"abstract":"<div><p>The primary technique used for air traffic surveillance is radar. However, nowadays, its role in surveillance is gradually being replaced by the recently adopted Automatic Dependent Surveillance-Broadcast (ADS-B). ADS-B offers a higher accuracy, lower power consumption, and longer range than radar, thus providing more safety to aircraft. The coverage of terrestrial radar and ADS-B is confined to continental parts of the globe, leaving oceans and poles uncovered by real-time surveillance measures. This study presents an optimized Low-Earth Orbit (LEO)-based ADS-B constellation for global air traffic surveillance over intercontinental trans-oceanic flight routes. The optimization algorithm is based on performance evaluation parameters, i.e., coverage time, satellite availability, and orbit stability (precession and perigee rotation), and communication analysis. The results indicate that the constellation provides ample coverage in the simulated global oceanic regions. The constellation is a feasible and cost-effective solution for global air supervision, which can supplement terrestrial ADS-B and radar systems.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0189-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The primary technique used for air traffic surveillance is radar. However, nowadays, its role in surveillance is gradually being replaced by the recently adopted Automatic Dependent Surveillance-Broadcast (ADS-B). ADS-B offers a higher accuracy, lower power consumption, and longer range than radar, thus providing more safety to aircraft. The coverage of terrestrial radar and ADS-B is confined to continental parts of the globe, leaving oceans and poles uncovered by real-time surveillance measures. This study presents an optimized Low-Earth Orbit (LEO)-based ADS-B constellation for global air traffic surveillance over intercontinental trans-oceanic flight routes. The optimization algorithm is based on performance evaluation parameters, i.e., coverage time, satellite availability, and orbit stability (precession and perigee rotation), and communication analysis. The results indicate that the constellation provides ample coverage in the simulated global oceanic regions. The constellation is a feasible and cost-effective solution for global air supervision, which can supplement terrestrial ADS-B and radar systems.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.