{"title":"Regularizing fuel-optimal multi-impulse trajectories","authors":"Kenta Oshima","doi":"10.1007/s42064-023-0176-2","DOIUrl":null,"url":null,"abstract":"<div><p>The regularization theory has successfully enabled the removal of gravitational singularities associated with celestial bodies. In this study, regularizing techniques are merged into a multi-impulse trajectory design framework that requires delicate computations, particularly for a fuel minimization problem. Regularized variables based on the Levi–Civita or Kustaanheimo–Stiefel transformations express instantaneous velocity changes in a gradient-based direct optimization method. The formulation removes the adverse singularities associated with the null thrust impulses from the derivatives of an objective function in the fuel minimization problem. The favorite singularity-free property enables the accurate reduction of unnecessary impulses and the generation of necessary impulses for local optimal solutions in an automatic manner. Examples of fuel-optimal multi-impulse trajectories are presented, including novel transfer solutions between a near-rectilinear halo orbit and a distant retrograde orbit.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0176-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The regularization theory has successfully enabled the removal of gravitational singularities associated with celestial bodies. In this study, regularizing techniques are merged into a multi-impulse trajectory design framework that requires delicate computations, particularly for a fuel minimization problem. Regularized variables based on the Levi–Civita or Kustaanheimo–Stiefel transformations express instantaneous velocity changes in a gradient-based direct optimization method. The formulation removes the adverse singularities associated with the null thrust impulses from the derivatives of an objective function in the fuel minimization problem. The favorite singularity-free property enables the accurate reduction of unnecessary impulses and the generation of necessary impulses for local optimal solutions in an automatic manner. Examples of fuel-optimal multi-impulse trajectories are presented, including novel transfer solutions between a near-rectilinear halo orbit and a distant retrograde orbit.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.