{"title":"Collision-avoidance strategy for a spinning electrodynamic tether system","authors":"Linxiao Li, Aijun Li, Hongshi Lu, Changqing Wang, Yuriy Mikhailovich Zabolotnov, Yong Guo","doi":"10.1007/s42064-023-0175-3","DOIUrl":null,"url":null,"abstract":"<div><p>Spinning electrodynamic tether systems (SEDTs) have promising potential for the active removal of space debris, the construction of observation platforms, and the formation of artificial gravity. However, owing to the survivability problem of long tethers, designing collision-avoidance strategies for SEDTs with space debris is an urgent issue. This study focuses on the design of collision-avoidance strategies for SEDTs with an electrodynamic force (Ampere force). The relative distance between the debris and the SEDT is first derived, and then two collision-avoidance strategies are proposed according to the two different cases. When debris collides closer to a lighter subsatellite, a stationary avoidance strategy is proposed to change the spatial position of the subsatellite by adjusting only the angular motion of the tether, which maintains the original orbit of the SEDT. When debris collides closer to a heavier main spacecraft, a comprehensive avoidance strategy is proposed to change the spatial position of the SEDT by slightly modifying the orbital height and changing the tether angular motion simultaneously. The numerical results illustrate that the proposed strategies promptly avoid potential collisions of an SEDT with space debris without significant changes in the orbital \tparameters of the SEDT.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0175-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spinning electrodynamic tether systems (SEDTs) have promising potential for the active removal of space debris, the construction of observation platforms, and the formation of artificial gravity. However, owing to the survivability problem of long tethers, designing collision-avoidance strategies for SEDTs with space debris is an urgent issue. This study focuses on the design of collision-avoidance strategies for SEDTs with an electrodynamic force (Ampere force). The relative distance between the debris and the SEDT is first derived, and then two collision-avoidance strategies are proposed according to the two different cases. When debris collides closer to a lighter subsatellite, a stationary avoidance strategy is proposed to change the spatial position of the subsatellite by adjusting only the angular motion of the tether, which maintains the original orbit of the SEDT. When debris collides closer to a heavier main spacecraft, a comprehensive avoidance strategy is proposed to change the spatial position of the SEDT by slightly modifying the orbital height and changing the tether angular motion simultaneously. The numerical results illustrate that the proposed strategies promptly avoid potential collisions of an SEDT with space debris without significant changes in the orbital parameters of the SEDT.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.