IEEE Journal on Multiscale and Multiphysics Computational Techniques最新文献

筛选
英文 中文
Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver 漂移校正多物理信息神经网络耦合 PDE 求解器
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-09-02 DOI: 10.1109/JMMCT.2024.3452977
Kevin Wandke;Yang Zhang
{"title":"Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver","authors":"Kevin Wandke;Yang Zhang","doi":"10.1109/JMMCT.2024.3452977","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3452977","url":null,"abstract":"Solving the coupled partial differential equations (PDEs) that govern the dynamics of multiphysics systems is both important and challenging. Existing numerical methods such as the finite element method (FEM) are known to be computationally intensive, while machine learning techniques, like the physics-informed neural network (PINN), often falter when modeling complex systems or processes over long timescales. To overcome these limitations, we propose a new framework “Drift-Correcting Multiphysics Informed Neural Network” (DC-MPINN), specifically designed to solve coupled multiphysics problems efficiently over extended timescales–without sacrificing accuracy. This new method introduces an architecture for temporal domain decomposition that corrects drift of conserved quantities, as well as a composite loss function that allows solving coupled multiphysics problems. We demonstrate the superior performance of DC-MPINN over traditional FEM approaches in several benchmark problems. This approach represents a step forward in multiphysics computational techniques, enhancing our ability to understand and predict the behavior of physical processes across various disciplines.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes 用于高效分析不规则形状平面电路的无定式阻抗矩阵技术
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-08-20 DOI: 10.1109/JMMCT.2024.3446285
Ihsan Erdin
{"title":"An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes","authors":"Ihsan Erdin","doi":"10.1109/JMMCT.2024.3446285","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3446285","url":null,"abstract":"An indefinite impedance matrix technique is proposed for efficient analysis of irregular shaped planar microwave and gigabit rate printed circuit board (PCB) circuits. The proposed method combines segmentation and desegmentation algorithms in a single matrix operation. The segmentation algorithm unites multiple planar blocks to make a composite structure by connecting them at their edge ports which become dependent variables of the resulting system. The desegmentation algorithm, on the other hand, removes a planar block or multiple blocks from a structure by delimiting the removed blocks with shared ports which are dependent variables of the overarching system. Both segmentation and desegmentation algorithms require separation of ports into independent and dependent variable groups. The composite system matrix is ill-conditioned due to its dependent entries. The singularity is fixed by casting the matrix into a reduced form with the elimination of dependent entries according to proper terminal conditions. Normally, planar structures with complicated shapes can be characterized with successive application of segmentation and desegmentation methods. The proposed algorithm combines these multiple operations in a single matrix which includes the dependent ports of both added and subtracted blocks. The concomitant ill-conditioning of the augmented matrix is tackled with algebraic operations subject to terminal conditions which result in a reduced size indefinite impedance matrix. The proposed system of equations eliminate the need for successive application of segmentation and desegmentation methods and improve efficiency.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers 移动式电磁轨道发射器的新型电热模拟方法
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-08-08 DOI: 10.1109/JMMCT.2024.3440664
Changfan Yang;Qiang Ren;Fei Dai;Junsheng Cheng;Ling Xiong;Pengyu Li
{"title":"A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers","authors":"Changfan Yang;Qiang Ren;Fei Dai;Junsheng Cheng;Ling Xiong;Pengyu Li","doi":"10.1109/JMMCT.2024.3440664","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3440664","url":null,"abstract":"In recent years, the electromagnetic rail launcher (ERL) technology has garnered widespread attention in the field of launch systems due to its outstanding performance. During ERL system operation, a large pulsed electric current flows through the system, sharply accelerating the armature to a high speed within an extremely short period, accompanied by a rapid temperature increment. This process involves complex multi-physical phenomena, posing challenges to the design and simulation of ERL systems. We propose a dynamic simulation solution for the ERL launch process through an electromagnetic-thermal-kinematics cycle. In the electric-thermal coupling simulation, the temperature-dependent electrical conductivity is considered. Joule heat produced by current is employed as the heat source for the temperature field, enhancing the accuracy of the thermal simulation. In the electromagnetic-kinematics cycle, integrating the Lorentz force acting on the armature directly simulates the force situation of the ERL propulsion. Based on the designed dynamic simulation process for the multi-physics fields of ERL systems, the accuracy of the proposed method has been validated through simulations involving square and C-type armature ERL systems, as well as laboratory measurements. Unrestricted by the limitations of control equations and solution processes, the proposed method enables flexible simulation of ERL systems.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing 计算电磁学遇上自旋微ubits:控制量子传感和计算中的噪声效应
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-08-06 DOI: 10.1109/JMMCT.2024.3439531
Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob
{"title":"Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing","authors":"Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob","doi":"10.1109/JMMCT.2024.3439531","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3439531","url":null,"abstract":"Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions 采用闭式电感公式和综合机械相互作用的汤姆逊线圈致动器多物理场模型
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-18 DOI: 10.1109/JMMCT.2024.3430477
Zehui Sun;Jiazi Xu;Puyi Cui;Guoli Li;Zhong Chen;Guoyong Zhang;Qunjing Wang
{"title":"Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions","authors":"Zehui Sun;Jiazi Xu;Puyi Cui;Guoli Li;Zhong Chen;Guoyong Zhang;Qunjing Wang","doi":"10.1109/JMMCT.2024.3430477","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3430477","url":null,"abstract":"This paper introduces simplified closed-form formulas for inductance calculations tailored for cases involving coaxial coils in extreme proximity. These formulas address the challenges associated with inductance calculations in the equivalent-circuit method (ECM) modeling of Thomson-coil actuators (TCAs), offering ultra-fast fault current-breaking capability for DC circuit breakers. The implementation of the ECM model using these closed-form formulas features high efficiency, accessibility, and transferability. Importantly, the present implementation of the multiphysics ECM model integrates comprehensive mechanical interactions, providing a benchmark approach for designing TCAs.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal-Mechanical-Electromagnetic Multiphysics Simulation of Satellite Phased Array Antenna Based on DGTD and FEM Method 基于 DGTD 和有限元方法的卫星相控阵天线热-机械-电磁多物理场仿真
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-16 DOI: 10.1109/JMMCT.2024.3428517
Huan Huan Zhang;Xin Yi Liu;Ying Liu;Zhan Chun Fan;Hai Long Du
{"title":"Thermal-Mechanical-Electromagnetic Multiphysics Simulation of Satellite Phased Array Antenna Based on DGTD and FEM Method","authors":"Huan Huan Zhang;Xin Yi Liu;Ying Liu;Zhan Chun Fan;Hai Long Du","doi":"10.1109/JMMCT.2024.3428517","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3428517","url":null,"abstract":"An advanced multiphysics numerical methodology is introduced for simulating satellite phased array antennas, encompassing thermal, mechanical, and electromagnetic aspects. The finite element method (FEM) is employed for thermal and mechanical simulations, while the electromagnetic simulation is executed using the discontinuous Galerkin time-domain (DGTD) method. A multiphysics field coupling mechanism is devised to enable seamless co-simulation of thermal, mechanical, and electromagnetic phenomena. The capability, precision and versatility of the proposed method for multiphysics simulation of satellite phased array antennas are substantiated through comprehensive numerical examples.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-Learning-Assisted Design of Polarization Conversion Metasurface With On-Demand Frequency Response and Ultra-Broadband Electromagnetic Scattering Reduction 按需频率响应和减少超宽带电磁散射的极化转换元表面的深度学习辅助设计
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-15 DOI: 10.1109/JMMCT.2024.3427629
Yuting Xiao;Ke Chen;Yijun Feng
{"title":"Deep-Learning-Assisted Design of Polarization Conversion Metasurface With On-Demand Frequency Response and Ultra-Broadband Electromagnetic Scattering Reduction","authors":"Yuting Xiao;Ke Chen;Yijun Feng","doi":"10.1109/JMMCT.2024.3427629","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3427629","url":null,"abstract":"Designing compacted electromagnetic (EM) polarization conversion (PC) devices with high efficiency and various frequency response has become crucial due to their irreplaceable role in many applications such as satellite communications, imaging and radar detection. Here, we propose a method that combines prior-knowledge with deep-learning intelligent algorithm to enable fast customization of reflective metasurface polarization converter with on-demand frequency responses. The PC meta-atoms are designed through a combination of forward and inverse convolutional neural networks (FCNN and ICNN). Instead of time-consuming full-wave simulations, the FCNN can accurately predict the PC spectral response, enabling rapid generation of large datasets. While the ICNN, in conjunction with these datasets, facilitates efficient design of the PC meta-atoms. The proposed methodology is demonstrated through the generation of various PC meta-atoms with on-demand specified frequency bands, such as broadband, dual-band or tri-band responses. As an application, a reflective metasurface composed of the ultra-broadband PC atom and its mirror atom obtained with ICNN is designed and optimized with genetic algorithm which achieves a measured ultra-broadband radar cross-section reduction from 8–37 GHz. Our approach offers a quick and intelligent design solution for reflective PC devices, and may be potential in radar, antenna and communication fields.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers 约瑟夫森行波参数放大器建模的多物理场数值方法
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-15 DOI: 10.1109/JMMCT.2024.3428344
Samuel T. Elkin;Michael Haider;Thomas E. Roth
{"title":"Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers","authors":"Samuel T. Elkin;Michael Haider;Thomas E. Roth","doi":"10.1109/JMMCT.2024.3428344","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3428344","url":null,"abstract":"Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface 用于电枢和导轨界面电流数值研究的片元近似法
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-03 DOI: 10.1109/JMMCT.2024.3422609
Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang
{"title":"Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface","authors":"Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang","doi":"10.1109/JMMCT.2024.3422609","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3422609","url":null,"abstract":"The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations 基于非结构化输电线路建模法的二维耦合电热法用于雷电防护模拟
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-07-02 DOI: 10.1109/JMMCT.2024.3421958
Kaiqi Yan;Ana Vukovic;Phillip Sewell
{"title":"Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations","authors":"Kaiqi Yan;Ana Vukovic;Phillip Sewell","doi":"10.1109/JMMCT.2024.3421958","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3421958","url":null,"abstract":"This paper outlines a fully coupled electrothermal time-domain method to model the effects of lightning strikes and the formation of plasma. The plasma material is described by using the Drude model. This method predicts the formation of the discharge channel by solving the electromagnetic field and the temperature before, during and after the air breaks down. The proposed method is applied to analyse the performance of a number of segmented lightning diverter strips used for lightning protection.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信