A Higher-Order Stabilized Hybridized Discontinuous Galerkin Method for Simulating Semiconductor Devices

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nian-En Zhang;Dongyan Zhao;Haoqiang Feng;Yin-Da Wang;Yanning Chen;Qi-Chao Wang;Zheng-Wei Du;Yingzong Liang;Fang Liu;Hao Xie;Qiwei Zhan;Wen-Yan Yin
{"title":"A Higher-Order Stabilized Hybridized Discontinuous Galerkin Method for Simulating Semiconductor Devices","authors":"Nian-En Zhang;Dongyan Zhao;Haoqiang Feng;Yin-Da Wang;Yanning Chen;Qi-Chao Wang;Zheng-Wei Du;Yingzong Liang;Fang Liu;Hao Xie;Qiwei Zhan;Wen-Yan Yin","doi":"10.1109/JMMCT.2025.3575845","DOIUrl":null,"url":null,"abstract":"The simulation of carrier transport in power electronic devices imposes stringent requirements on numerical stability, confining the previous methods to low-order schemes. To address this issue, a stabilized higher-order hybridized discontinuous Galerkin method (S-HDG) is proposed, where we decouple the exponentially varying carrier density from the differential operator and project it onto a lower-dimensional equation. Based on the numerical jumps as indicator, an adaptive artificial diffusion term is introduced to dynamically control oscillatory errors and over diffusion during the iterations for solving nonlinear equations. We validate the proposed method to abrupt junction models, demonstrating its high-order accuracy and robustness against severe mesh skewness and curvature. Furthermore, we apply the method to lateral double-diffused MOSFET (LDMOS), a class of typical power electronic devices, achieving good agreement with the industrial-standard FVSG solver in simulating electrical parameters. Notably, our method can offer higher-order convergence and better compatibility with unstructured meshes.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"283-294"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11021291/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of carrier transport in power electronic devices imposes stringent requirements on numerical stability, confining the previous methods to low-order schemes. To address this issue, a stabilized higher-order hybridized discontinuous Galerkin method (S-HDG) is proposed, where we decouple the exponentially varying carrier density from the differential operator and project it onto a lower-dimensional equation. Based on the numerical jumps as indicator, an adaptive artificial diffusion term is introduced to dynamically control oscillatory errors and over diffusion during the iterations for solving nonlinear equations. We validate the proposed method to abrupt junction models, demonstrating its high-order accuracy and robustness against severe mesh skewness and curvature. Furthermore, we apply the method to lateral double-diffused MOSFET (LDMOS), a class of typical power electronic devices, achieving good agreement with the industrial-standard FVSG solver in simulating electrical parameters. Notably, our method can offer higher-order convergence and better compatibility with unstructured meshes.
模拟半导体器件的高阶稳定杂化不连续伽辽金方法
电力电子器件中载流子输运的模拟对数值稳定性提出了严格的要求,使以往的方法局限于低阶格式。为了解决这个问题,提出了一种稳定的高阶杂交不连续伽辽金方法(S-HDG),该方法将指数变化的载流子密度与微分算子解耦,并将其投影到低维方程中。以数值跳跃为指标,引入自适应人工扩散项,动态控制非线性方程迭代过程中的振荡误差和过扩散。通过对突变结点模型的验证,证明了该方法的高阶精度和对严重网格偏度和曲率的鲁棒性。此外,我们将该方法应用于一类典型的电力电子器件——横向双扩散MOSFET (LDMOS),在模拟电气参数方面与工业标准的FVSG求解器很好地吻合。值得注意的是,我们的方法可以提供更高阶的收敛性,并且与非结构化网格具有更好的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信