基于深度学习的多功能超高质量因子光子晶体环形谐振器预测

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
P. Agilandeswari;G. Thavasi Raja;R. Rajasekar;R. Parthasarathy
{"title":"基于深度学习的多功能超高质量因子光子晶体环形谐振器预测","authors":"P. Agilandeswari;G. Thavasi Raja;R. Rajasekar;R. Parthasarathy","doi":"10.1109/JMMCT.2025.3583976","DOIUrl":null,"url":null,"abstract":"A novel deep learning-based reconfigurable and multifunctional Photonic Crystal Ring Resonator (PCRR) is designed with narrow bandwidth, low insertion loss and ultracompact size for lightwave communication and optical computing applications. The designed coupled nanoring resonator is used to realize four different functions of optical switch, narrow bandpass filter, encoder and XOR gate. The periodic structure of photonic bandgap frequency range is calculated by the Plane Wave Expansion (PWE) technique. The multifunctional nanoscale structure performance parameters of extinction ratio, quality factor and insertion loss are numerically analyzed by Finite-Difference-Time-Domain (FDTD) method. The deep learning algorithm of Long Short Term Memory- Neural Network (LSTM-NN) is used to predict the design parameters with low mean square error and less computation time of 50 seconds. The nanoring resonators is designed with high quality factor of 2566.83, high extinction ratio of 34.87 dB and ultracompact size of 179.20 μm<sup>2</sup>. Hence, this multifunctional platform is highly appropriate for photonic integrated circuits and optical computing system.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"295-303"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Prediction of Multifunctional Photonic Crystal Ring Resonator With Ultra High-Quality Factor\",\"authors\":\"P. Agilandeswari;G. Thavasi Raja;R. Rajasekar;R. Parthasarathy\",\"doi\":\"10.1109/JMMCT.2025.3583976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel deep learning-based reconfigurable and multifunctional Photonic Crystal Ring Resonator (PCRR) is designed with narrow bandwidth, low insertion loss and ultracompact size for lightwave communication and optical computing applications. The designed coupled nanoring resonator is used to realize four different functions of optical switch, narrow bandpass filter, encoder and XOR gate. The periodic structure of photonic bandgap frequency range is calculated by the Plane Wave Expansion (PWE) technique. The multifunctional nanoscale structure performance parameters of extinction ratio, quality factor and insertion loss are numerically analyzed by Finite-Difference-Time-Domain (FDTD) method. The deep learning algorithm of Long Short Term Memory- Neural Network (LSTM-NN) is used to predict the design parameters with low mean square error and less computation time of 50 seconds. The nanoring resonators is designed with high quality factor of 2566.83, high extinction ratio of 34.87 dB and ultracompact size of 179.20 μm<sup>2</sup>. Hence, this multifunctional platform is highly appropriate for photonic integrated circuits and optical computing system.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"295-303\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053663/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11053663/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种基于深度学习的可重构多功能光子晶体环形谐振器(PCRR),具有窄带宽、低插入损耗和超紧凑尺寸,可用于光波通信和光计算应用。设计的耦合纳米环谐振腔实现了光开关、窄带通滤波器、编码器和异或门四种不同的功能。利用平面波展开(PWE)技术计算了光子带隙频率范围的周期结构。采用时域有限差分(FDTD)方法对多功能纳米结构消光比、品质因子和插入损耗等性能参数进行了数值分析。采用长短期记忆-神经网络(LSTM-NN)深度学习算法预测设计参数,均方误差小,计算时间缩短至50秒。所设计的纳米谐振腔具有2566.83的高品质因数、34.87 dB的高消光比和179.20 μm2的超紧凑尺寸。因此,该多功能平台非常适合用于光子集成电路和光计算系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Prediction of Multifunctional Photonic Crystal Ring Resonator With Ultra High-Quality Factor
A novel deep learning-based reconfigurable and multifunctional Photonic Crystal Ring Resonator (PCRR) is designed with narrow bandwidth, low insertion loss and ultracompact size for lightwave communication and optical computing applications. The designed coupled nanoring resonator is used to realize four different functions of optical switch, narrow bandpass filter, encoder and XOR gate. The periodic structure of photonic bandgap frequency range is calculated by the Plane Wave Expansion (PWE) technique. The multifunctional nanoscale structure performance parameters of extinction ratio, quality factor and insertion loss are numerically analyzed by Finite-Difference-Time-Domain (FDTD) method. The deep learning algorithm of Long Short Term Memory- Neural Network (LSTM-NN) is used to predict the design parameters with low mean square error and less computation time of 50 seconds. The nanoring resonators is designed with high quality factor of 2566.83, high extinction ratio of 34.87 dB and ultracompact size of 179.20 μm2. Hence, this multifunctional platform is highly appropriate for photonic integrated circuits and optical computing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信