量子纳米结构非局域光响应分析的快速良条件体积积分方程求解器

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Runwei Zhou;Dan Jiao
{"title":"量子纳米结构非局域光响应分析的快速良条件体积积分方程求解器","authors":"Runwei Zhou;Dan Jiao","doi":"10.1109/JMMCT.2025.3550117","DOIUrl":null,"url":null,"abstract":"Solid-state spin qubits are one of the candidate platforms for future quantum computers due to their long coherence time and good controllability. However, qubits are susceptible to noise generated from external magnetic fields. In this paper, we present a fast and accurate volume integral equation solver for analyzing local/nonlocal optical responses in quantum nano-electromagnetic gate circuitry. Due to small electric sizes of quantum circuitry, conventional volume integral equation (VIE) solvers suffer from both numerical difficulties and deteriorated accuracy since the underlying numerical system is highly ill-conditioned. To overcome this problem, we introduce a well-conditioned VIE formulation. We further accelerate the VIE solution by transforming the six-dimensional integral arising from the nonlocal constitutive relation to the spectral domain using fast Fourier transform (FFT). The same FFT is also applied to efficiently compute the convolution of Green's function with equivalent volumetric currents. The resultant fast and robust VIE solver has been applied to analyze large-scale 3-D quantum gate devices. Both local and nonlocal optical responses of the devices are captured accurately and efficiently. This work offers a fast and accurate approach to guide the noise control of high-fidelity quantum gate circuitry design.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"209-217"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Well-Conditioned Volume Integral Equation Solver for Analyzing Nonlocal Optical Responses in Quantum Nanostructures\",\"authors\":\"Runwei Zhou;Dan Jiao\",\"doi\":\"10.1109/JMMCT.2025.3550117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state spin qubits are one of the candidate platforms for future quantum computers due to their long coherence time and good controllability. However, qubits are susceptible to noise generated from external magnetic fields. In this paper, we present a fast and accurate volume integral equation solver for analyzing local/nonlocal optical responses in quantum nano-electromagnetic gate circuitry. Due to small electric sizes of quantum circuitry, conventional volume integral equation (VIE) solvers suffer from both numerical difficulties and deteriorated accuracy since the underlying numerical system is highly ill-conditioned. To overcome this problem, we introduce a well-conditioned VIE formulation. We further accelerate the VIE solution by transforming the six-dimensional integral arising from the nonlocal constitutive relation to the spectral domain using fast Fourier transform (FFT). The same FFT is also applied to efficiently compute the convolution of Green's function with equivalent volumetric currents. The resultant fast and robust VIE solver has been applied to analyze large-scale 3-D quantum gate devices. Both local and nonlocal optical responses of the devices are captured accurately and efficiently. This work offers a fast and accurate approach to guide the noise control of high-fidelity quantum gate circuitry design.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"209-217\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10921723/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10921723/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

固态自旋量子比特具有相干时间长、可控性好等优点,是未来量子计算机的候选平台之一。然而,量子比特容易受到外部磁场产生的噪声的影响。本文提出了一种快速准确的体积积分方程求解器,用于分析量子纳米电磁门电路中的局部/非局部光响应。由于量子电路的电尺寸小,传统的体积积分方程(VIE)求解方法存在数值困难和精度下降的问题,因为底层的数值系统是高度病态的。为了克服这个问题,我们引入了一个条件良好的VIE公式。我们通过使用快速傅立叶变换(FFT)将非局部本构关系产生的六维积分转换为谱域,进一步加速了VIE解决方案。同样的FFT也被应用于有效地计算具有等效体积电流的格林函数的卷积。所得到的快速鲁棒的VIE求解器已应用于大规模三维量子门器件的分析。准确有效地捕获了器件的局部和非局部光响应。本研究为高保真量子门电路的噪声控制提供了一种快速准确的指导方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Well-Conditioned Volume Integral Equation Solver for Analyzing Nonlocal Optical Responses in Quantum Nanostructures
Solid-state spin qubits are one of the candidate platforms for future quantum computers due to their long coherence time and good controllability. However, qubits are susceptible to noise generated from external magnetic fields. In this paper, we present a fast and accurate volume integral equation solver for analyzing local/nonlocal optical responses in quantum nano-electromagnetic gate circuitry. Due to small electric sizes of quantum circuitry, conventional volume integral equation (VIE) solvers suffer from both numerical difficulties and deteriorated accuracy since the underlying numerical system is highly ill-conditioned. To overcome this problem, we introduce a well-conditioned VIE formulation. We further accelerate the VIE solution by transforming the six-dimensional integral arising from the nonlocal constitutive relation to the spectral domain using fast Fourier transform (FFT). The same FFT is also applied to efficiently compute the convolution of Green's function with equivalent volumetric currents. The resultant fast and robust VIE solver has been applied to analyze large-scale 3-D quantum gate devices. Both local and nonlocal optical responses of the devices are captured accurately and efficiently. This work offers a fast and accurate approach to guide the noise control of high-fidelity quantum gate circuitry design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信