Nikolas Hadjiantoni;Dou Feng;Miguel Navarro-Cía;Stephen M. Hanham
{"title":"3D可打印太赫兹透镜天线自动化设计的拓扑优化框架","authors":"Nikolas Hadjiantoni;Dou Feng;Miguel Navarro-Cía;Stephen M. Hanham","doi":"10.1109/JMMCT.2025.3558662","DOIUrl":null,"url":null,"abstract":"Electromagnetic topological optimization holds the promise of the fully automated design of electromagnetic structures such as antennas, waveguides, metasurfaces and metamaterials; however, it often yields designs that are incompatible with fabrication processes. In this work, we describe a topological optimization framework that combines structural finite element analysis and electromagnetic finite-difference time-domain simulation to realize fabricable structures which meet specified electromagnetic design objectives. As a demonstration, the framework is applied towards the design of G-band low-profile leaky lens antennas suitable for future 6G communication applications. The 5<inline-formula><tex-math>$\\lambda _{0}$</tex-math></inline-formula> radius, 2<inline-formula><tex-math>$\\lambda _{0}$</tex-math></inline-formula> thick leaky lens antenna is compatible with stereolithography 3D printing and displays a realized gain of 23 dBi at 0.2 THz with a low side-lobe level of −20 dB. We foresee the proposed framework being applicable to a wide range of electromagnetic design problems intended for fabrication using additive manufacturing techniques.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"218-226"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Optimization Framework for the Automated Design of 3D Printable THz Lens Antennas\",\"authors\":\"Nikolas Hadjiantoni;Dou Feng;Miguel Navarro-Cía;Stephen M. Hanham\",\"doi\":\"10.1109/JMMCT.2025.3558662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic topological optimization holds the promise of the fully automated design of electromagnetic structures such as antennas, waveguides, metasurfaces and metamaterials; however, it often yields designs that are incompatible with fabrication processes. In this work, we describe a topological optimization framework that combines structural finite element analysis and electromagnetic finite-difference time-domain simulation to realize fabricable structures which meet specified electromagnetic design objectives. As a demonstration, the framework is applied towards the design of G-band low-profile leaky lens antennas suitable for future 6G communication applications. The 5<inline-formula><tex-math>$\\\\lambda _{0}$</tex-math></inline-formula> radius, 2<inline-formula><tex-math>$\\\\lambda _{0}$</tex-math></inline-formula> thick leaky lens antenna is compatible with stereolithography 3D printing and displays a realized gain of 23 dBi at 0.2 THz with a low side-lobe level of −20 dB. We foresee the proposed framework being applicable to a wide range of electromagnetic design problems intended for fabrication using additive manufacturing techniques.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"218-226\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955163/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955163/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Topological Optimization Framework for the Automated Design of 3D Printable THz Lens Antennas
Electromagnetic topological optimization holds the promise of the fully automated design of electromagnetic structures such as antennas, waveguides, metasurfaces and metamaterials; however, it often yields designs that are incompatible with fabrication processes. In this work, we describe a topological optimization framework that combines structural finite element analysis and electromagnetic finite-difference time-domain simulation to realize fabricable structures which meet specified electromagnetic design objectives. As a demonstration, the framework is applied towards the design of G-band low-profile leaky lens antennas suitable for future 6G communication applications. The 5$\lambda _{0}$ radius, 2$\lambda _{0}$ thick leaky lens antenna is compatible with stereolithography 3D printing and displays a realized gain of 23 dBi at 0.2 THz with a low side-lobe level of −20 dB. We foresee the proposed framework being applicable to a wide range of electromagnetic design problems intended for fabrication using additive manufacturing techniques.