Topological Optimization Framework for the Automated Design of 3D Printable THz Lens Antennas

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nikolas Hadjiantoni;Dou Feng;Miguel Navarro-Cía;Stephen M. Hanham
{"title":"Topological Optimization Framework for the Automated Design of 3D Printable THz Lens Antennas","authors":"Nikolas Hadjiantoni;Dou Feng;Miguel Navarro-Cía;Stephen M. Hanham","doi":"10.1109/JMMCT.2025.3558662","DOIUrl":null,"url":null,"abstract":"Electromagnetic topological optimization holds the promise of the fully automated design of electromagnetic structures such as antennas, waveguides, metasurfaces and metamaterials; however, it often yields designs that are incompatible with fabrication processes. In this work, we describe a topological optimization framework that combines structural finite element analysis and electromagnetic finite-difference time-domain simulation to realize fabricable structures which meet specified electromagnetic design objectives. As a demonstration, the framework is applied towards the design of G-band low-profile leaky lens antennas suitable for future 6G communication applications. The 5<inline-formula><tex-math>$\\lambda _{0}$</tex-math></inline-formula> radius, 2<inline-formula><tex-math>$\\lambda _{0}$</tex-math></inline-formula> thick leaky lens antenna is compatible with stereolithography 3D printing and displays a realized gain of 23 dBi at 0.2 THz with a low side-lobe level of −20 dB. We foresee the proposed framework being applicable to a wide range of electromagnetic design problems intended for fabrication using additive manufacturing techniques.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"218-226"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955163/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic topological optimization holds the promise of the fully automated design of electromagnetic structures such as antennas, waveguides, metasurfaces and metamaterials; however, it often yields designs that are incompatible with fabrication processes. In this work, we describe a topological optimization framework that combines structural finite element analysis and electromagnetic finite-difference time-domain simulation to realize fabricable structures which meet specified electromagnetic design objectives. As a demonstration, the framework is applied towards the design of G-band low-profile leaky lens antennas suitable for future 6G communication applications. The 5$\lambda _{0}$ radius, 2$\lambda _{0}$ thick leaky lens antenna is compatible with stereolithography 3D printing and displays a realized gain of 23 dBi at 0.2 THz with a low side-lobe level of −20 dB. We foresee the proposed framework being applicable to a wide range of electromagnetic design problems intended for fabrication using additive manufacturing techniques.
3D可打印太赫兹透镜天线自动化设计的拓扑优化框架
电磁拓扑优化有望实现天线、波导、超表面和超材料等电磁结构的全自动设计;然而,它经常产生与制造工艺不相容的设计。在这项工作中,我们描述了一种结合结构有限元分析和电磁时域有限差分仿真的拓扑优化框架,以实现满足特定电磁设计目标的可制造结构。作为示范,将该框架应用于适合未来6G通信应用的g波段低轮廓漏透镜天线的设计。5$\lambda _{0}$半径,2$\lambda _{0}$厚漏透镜天线兼容立体光刻3D打印,并在0.2太赫兹下显示23 dBi的实现增益,副瓣电平低至- 20 dB。我们预计所提出的框架适用于使用增材制造技术制造的广泛的电磁设计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信