IEEE Journal on Multiscale and Multiphysics Computational Techniques最新文献

筛选
英文 中文
Electrostatic Boundary Integral Method for 3D Structures in a Layered Conducting Medium 层状导电介质中三维结构的静电边界积分法
IF 1.8
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-06-19 DOI: 10.1109/JMMCT.2024.3416688
Stephen D. Gedney;Nastaran Hendijani;John C. Young;Robert J. Adams
{"title":"Electrostatic Boundary Integral Method for 3D Structures in a Layered Conducting Medium","authors":"Stephen D. Gedney;Nastaran Hendijani;John C. Young;Robert J. Adams","doi":"10.1109/JMMCT.2024.3416688","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3416688","url":null,"abstract":"An integral equation formulation is presented for the modeling of the electrostatic fields surrounding arbitrary three-dimensional structures situated in a conducting layered medium. The layered Green's function for the electrostatic potential and the tensor Green's function for the gradient potential are derived. Closed forms for the 3D layered Green's functions are generated using a discrete complex image method (DCIM) approximation. Improved accuracy of the DCIM approximation is achieved using optimization for the computation of the DCIM poles and residues. The problem is discretized via a high-order locally corrected Nyström method with curvilinear cells. Several examples are shown that demonstrate the accuracy of the DCIM approximation for layered media with disparate layer spacing and conductivities for arbitrary 3D geometries.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LB-ADI: An Efficient Method for Transient Thermal Simulation of Integrated Chiplets and Packages LB-ADI:集成芯片和封装瞬态热模拟的高效方法
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-04-09 DOI: 10.1109/JMMCT.2024.3386842
Jie Li;Min Tang;Lin-Sheng Wu;Liguo Jiang;Wenliang Dai;Junfa Mao
{"title":"LB-ADI: An Efficient Method for Transient Thermal Simulation of Integrated Chiplets and Packages","authors":"Jie Li;Min Tang;Lin-Sheng Wu;Liguo Jiang;Wenliang Dai;Junfa Mao","doi":"10.1109/JMMCT.2024.3386842","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3386842","url":null,"abstract":"In this article, an efficient Laguerre-based alternating direction implicit (LB-ADI) approach is proposed for the transient thermal simulation of integrated chiplets and packages. The transient heat conduction equation is transformed into the Laguerre domain by the Laguerre basis functions and the Galerkin's testing method. With spatial discretization, the resulting matrix equation based on a marching-on-in-order scheme is established. In order to improve the computational efficiency, a new ADI approach in the Laguerre domain is developed. Only three tridiagonal matrices need to be solved in each order, which significantly reduces the simulation time and memory requirement. The accuracy and efficiency of the proposed method are validated by numerical results.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning 基于物理信息机器学习的混合电磁优化方法
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-04-05 DOI: 10.1109/JMMCT.2024.3385451
Yanan Liu;Hongliang Li;Jian-Ming Jin
{"title":"A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning","authors":"Yanan Liu;Hongliang Li;Jian-Ming Jin","doi":"10.1109/JMMCT.2024.3385451","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3385451","url":null,"abstract":"In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Iterative Solution of Combined Source Integral Equation Using Characteristic Basis Function Method With Initial Guess 使用带初始猜测的特征基函数法高效迭代求解组合源积分方程
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-28 DOI: 10.1109/JMMCT.2024.3382725
Zhiwen Dong;Xinlei Chen;Fan Gao;Changqing Gu;Zhuo Li;Wu Yang;Weibing Lu
{"title":"Efficient Iterative Solution of Combined Source Integral Equation Using Characteristic Basis Function Method With Initial Guess","authors":"Zhiwen Dong;Xinlei Chen;Fan Gao;Changqing Gu;Zhuo Li;Wu Yang;Weibing Lu","doi":"10.1109/JMMCT.2024.3382725","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3382725","url":null,"abstract":"Using only the RWG functions, the combined source integral equation (CSIE) with weak form combined source condition can achieve fine accuracy and fast iterative convergence for conductor objects. However, compared with a conventional integral equation in the method of moments (MoM), the conventional CSIE involves more matrices and more complex numerical processing, and these make the CSIE inefficient, especially for multiple excitation problems. In this article, a characteristic basis function (CBF)-based CSIE with initial guess is proposed to mitigate this problem. The CBF is employed to reduce the number of unknowns as well as the storage consumptions and iteration time. In the meantime, an initial guess especially for CBFs is proposed to reduce iterations when solving multiple excitation problems. Numerical results are given to demonstrate the performance of the proposed method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3-D Spectral Element Time-Domain Method With Perfectly Matched Layers for Transient Schrödinger Equation 针对瞬态薛定谔方程的完美匹配层的三维谱元时域法
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-13 DOI: 10.1109/JMMCT.2024.3399911
Kangshuai Du;Shilie He;Chengzhuo Zhao;Na Liu;Qing Huo Liu
{"title":"A 3-D Spectral Element Time-Domain Method With Perfectly Matched Layers for Transient Schrödinger Equation","authors":"Kangshuai Du;Shilie He;Chengzhuo Zhao;Na Liu;Qing Huo Liu","doi":"10.1109/JMMCT.2024.3399911","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3399911","url":null,"abstract":"A spectral element time-domain (SETD) method with perfectly matched layers (PML) is proposed to simulate the behavior of electron waves, interference effects and tunneling effects, in three-dimensional (3-D) devices by solving Schrödinger equation. The proposed method employs Gauss-Lobatto-Legendre (GLL) polynomials to represent the wave function. Easy construction of higher-order element makes refinement straightforward and spectral accuracy can be obtained from the SETD. Meanwhile, by utilizing the GLL quadrature, a diagonal mass matrix is obtained which is meaningful in the time-stepping process. Numerical experiments confirm that, for open boundary problems, employing PML yields results characterized by high numerical efficiency, remarkable flexibility and ease of implementation. These findings underscore the effectiveness of SETD-PML in addressing the challenges posed by open boundary conditions, making it a reliable choice for numerical simulations. Some illustrative numerical examples are presented to demonstrate the performance of the proposed method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled Mechanical and Electromagnetic Analysis of Current on Armature and Rail Interface With Dynamic Contact 带动态触点的电枢和导轨接口电流的耦合机械和电磁分析
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-07 DOI: 10.1109/JMMCT.2024.3397464
Jinghan Xu;Shengguo Xia;Hongdan Yang;Lixue Chen
{"title":"Coupled Mechanical and Electromagnetic Analysis of Current on Armature and Rail Interface With Dynamic Contact","authors":"Jinghan Xu;Shengguo Xia;Hongdan Yang;Lixue Chen","doi":"10.1109/JMMCT.2024.3397464","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3397464","url":null,"abstract":"The electrical contact between the armature and rail (A/R) in a railgun is acknowledged as a dynamic sliding interface, exhibiting properties distinct from bulk. This paper employs a 3-D finite element method (FEM) for coupled mechanical and electromagnetic analysis and proposes boundary conditions for dynamic sliding contact to investigate current distribution on the A/R interface. Results show that contact pressure and area have similar trends as the driving current, which confines current distributed areas. The current distributions on stationary and sliding interfaces reveal different patterns but the distributed areas both locate within the contact areas. In the case of the stationary scenario, the current concentrates at the trailing edge when the current increases and diffuses to the leading edge when the current declines. However, due to the velocity skin effect (VSE), the current fails to diffuse into the interior during all stages. Besides, comparative calculations with constant contact indicate that forced shifts of current occur when the contact is dynamic, dominating the current distributions of the A/R interface. Moreover, the influence of the VSE on forced shifts of current is notable, with significant current variations observed near the trailing edge, whereas those around the leading edge are less pronounced.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalent Circuit Model Development Accounting for Mutual-Coupling Effects 考虑相互耦合效应的等效电路模型开发
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-06 DOI: 10.1109/JMMCT.2024.3396801
Chandan Roy;Ke Wu
{"title":"Equivalent Circuit Model Development Accounting for Mutual-Coupling Effects","authors":"Chandan Roy;Ke Wu","doi":"10.1109/JMMCT.2024.3396801","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3396801","url":null,"abstract":"Mutual-coupling effects are of utmost importance in the development of high-frequency circuits and systems. However, it is a common practice to ignore those couplings when establishing equivalent circuit models. Neglecting these couplings leads to inaccurate circuit modelling. Therefore, it becomes imperative to account for mutual couplings in the development of accurate equivalent circuit models. This work presents a holistic process for synthesizing the equivalent circuit model of an electromagnetic (EM) field structure that incorporates mutual couplings of varying orders. The proposed high-order framework begins by developing equivalent circuit models for each individual transmission line discontinuity within the target circuit. Subsequently, the mutual couplings of different orders are extracted in a step-by-step manner. Throughout this process, full-wave EM simulations are deployed, along with a circuit parameter extraction method that utilizes de-embedded circuit responses. By combining these techniques, a comprehensive and accurate equivalent circuit model is generated, enabling a detailed analysis of the target field model structure, and facilitating a deeper understanding of its electrical and magnetic behavior and performance. This paper utilizes a three-step microstrip discontinuity structure and a third-order parallel coupled microstrip filter as examples for theoretical and experimental demonstration of the proposed technique.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140919115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Considering Capacitive Effects in Foil Winding Homogenization 在箔绕组均质化中考虑电容效应
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-06 DOI: 10.1109/JMMCT.2024.3396823
Jonas Bundschuh;Yvonne Späck-Leigsnering;Herbert De Gersem
{"title":"Considering Capacitive Effects in Foil Winding Homogenization","authors":"Jonas Bundschuh;Yvonne Späck-Leigsnering;Herbert De Gersem","doi":"10.1109/JMMCT.2024.3396823","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3396823","url":null,"abstract":"In conventional finite element simulations, foil windings with a thin foil and many turns require many mesh elements. This renders models quickly computationally infeasible. With the use of homogenization approaches, the finite element mesh does not need to resolve the small-scale structure of the foil winding domain. Present homogenization approaches take resistive and inductive effects into account. With an increase of the operation frequency of foil windings, however, capacitive effects between adjacent turns in the foil winding become relevant. This paper presents an extension to the standard foil winding model that covers the capacitive behavior of foil windings.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic-Circuital-Thermal-Mechanical Multiphysics Numerical Simulation Method for Microwave Circuits 微波电路的电磁-电路-热学-力学多物理场数值模拟方法
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-04 DOI: 10.1109/JMMCT.2024.3372619
Huan Huan Zhang;Zheng Lang Jia;Peng Fei Zhang;Ying Liu;Li Jun Jiang;Da Zhi Ding
{"title":"Electromagnetic-Circuital-Thermal-Mechanical Multiphysics Numerical Simulation Method for Microwave Circuits","authors":"Huan Huan Zhang;Zheng Lang Jia;Peng Fei Zhang;Ying Liu;Li Jun Jiang;Da Zhi Ding","doi":"10.1109/JMMCT.2024.3372619","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3372619","url":null,"abstract":"A electromagnetic-circuital-thermal-mechanical mu- ltiphysics numerical method is proposed for the simulation of microwave circuits. The discontinuous Galerkin time-domain (DGTD) method is adopted for electromagnetic simulation. The time-domain finite element method (FEM) is utilized for thermal simulation. The circuit equation is applied for circuit simulation. The mechanical simulation is also carried out by FEM method. A flexible and unified multiphysics field coupling mechanism is constructed to cover various electromagnetic, circuital, thermal and mechanical multiphysics coupling scenarios. Finally, three numerical examples emulating outer space environment, intense electromagnetic pulse (EMP) injection and high power microwave (HPM) illumination are utilized to demonstrate the accuracy, efficiency, and capability of the proposed method. The proposed method provides a versatile and powerful tool for the design and analysis of microwave circuits characterized by intertwined electromagnetic, circuital, thermal and stress behaviors.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms 电磁波的自旋和轨道角动量:从经典形式到量子形式
IF 2.3
IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-02-29 DOI: 10.1109/JMMCT.2024.3370729
Wei E. I. Sha;Zhihao Lan;Menglin L. N. Chen;Yongpin P. Chen;Sheng Sun
{"title":"Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms","authors":"Wei E. I. Sha;Zhihao Lan;Menglin L. N. Chen;Yongpin P. Chen;Sheng Sun","doi":"10.1109/JMMCT.2024.3370729","DOIUrl":"10.1109/JMMCT.2024.3370729","url":null,"abstract":"Angular momenta of electromagnetic waves are important both in concepts and applications. In this work, we systematically discuss two types of angular momenta, i.e., spin angular momentum and orbital angular momentum in various cases, e.g., with source and without source, in classical and quantum forms. Numerical results demonstrating how to extract the topological charge of a classical vortex beam by spectral method are also presented.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10453653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140080926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信