边界元法中$\mathcal {H}$-矩阵混合直接迭代解的最优预条件

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Omid Babazadeh;Emrah Sever;Jin Hu;Ian Jeffrey;Constantine Sideris;Vladimir Okhmatovski
{"title":"边界元法中$\\mathcal {H}$-矩阵混合直接迭代解的最优预条件","authors":"Omid Babazadeh;Emrah Sever;Jin Hu;Ian Jeffrey;Constantine Sideris;Vladimir Okhmatovski","doi":"10.1109/JMMCT.2025.3547827","DOIUrl":null,"url":null,"abstract":"The paper proposes a new approach to the fast solution of matrix equations resulting from boundary element discretization of integral equations. By hybridizing fast iterative <inline-formula><tex-math>$\\mathcal {H}$</tex-math></inline-formula>-matrix solvers with a fast direct <inline-formula><tex-math>$\\mathcal {H}$</tex-math></inline-formula>-matrix preconditioner factorization, we create a framework that can be tuned between the extremes of a direct solver and a unpreconditioned iterative solver. This tuning is largely achieved using a single numerical parameter representing the preconditioner tolerance. A more complicated scheme involving two different tolerances is also briefly considered. The proposed framework is demonstrated on a high-order accurate Locally Corrected Nyström solution of surface integral equations for PEC targets. Examples consider various scattering problems including those featuring strong physical resonances. We show that appropriately choosing the preconditioner tolerance achieves the prescribed solution accuracy with minimal CPU time. Expanding from one to two tolerance parameters further enhances the framework by providing the flexibility to dynamically adjust tolerance, enabling higher compression while maintaining accuracy and fast convergence. This adaptive strategy offers significant potential for optimizing the balance between memory usage and CPU time in the future.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"187-197"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Preconditioners for Hybrid Direct-Iterative $\\\\mathcal {H}$-Matrix Solvers in Boundary Element Methods\",\"authors\":\"Omid Babazadeh;Emrah Sever;Jin Hu;Ian Jeffrey;Constantine Sideris;Vladimir Okhmatovski\",\"doi\":\"10.1109/JMMCT.2025.3547827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new approach to the fast solution of matrix equations resulting from boundary element discretization of integral equations. By hybridizing fast iterative <inline-formula><tex-math>$\\\\mathcal {H}$</tex-math></inline-formula>-matrix solvers with a fast direct <inline-formula><tex-math>$\\\\mathcal {H}$</tex-math></inline-formula>-matrix preconditioner factorization, we create a framework that can be tuned between the extremes of a direct solver and a unpreconditioned iterative solver. This tuning is largely achieved using a single numerical parameter representing the preconditioner tolerance. A more complicated scheme involving two different tolerances is also briefly considered. The proposed framework is demonstrated on a high-order accurate Locally Corrected Nyström solution of surface integral equations for PEC targets. Examples consider various scattering problems including those featuring strong physical resonances. We show that appropriately choosing the preconditioner tolerance achieves the prescribed solution accuracy with minimal CPU time. Expanding from one to two tolerance parameters further enhances the framework by providing the flexibility to dynamically adjust tolerance, enabling higher compression while maintaining accuracy and fast convergence. This adaptive strategy offers significant potential for optimizing the balance between memory usage and CPU time in the future.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"187-197\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909480/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909480/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种由积分方程的边界元离散化引起的矩阵方程快速求解的新方法。通过混合快速迭代$\mathcal {H}$-矩阵解算器和快速直接$\mathcal {H}$-矩阵预条件分解,我们创建了一个框架,可以在直接解算器和非预条件迭代解算器的极值之间进行调整。这种调优在很大程度上是通过使用表示预调节器容差的单个数值参数来实现的。还简要地考虑了涉及两种不同公差的更复杂的方案。该框架在PEC目标表面积分方程的高阶精确局部修正Nyström解上得到了验证。示例考虑各种散射问题,包括那些具有强物理共振的散射问题。我们证明,适当地选择预条件容限可以在最小的CPU时间内达到规定的解精度。从一个公差参数扩展到两个公差参数进一步增强了框架,提供了动态调整公差的灵活性,在保持精度和快速收敛的同时实现更高的压缩。这种自适应策略为将来优化内存使用和CPU时间之间的平衡提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Preconditioners for Hybrid Direct-Iterative $\mathcal {H}$-Matrix Solvers in Boundary Element Methods
The paper proposes a new approach to the fast solution of matrix equations resulting from boundary element discretization of integral equations. By hybridizing fast iterative $\mathcal {H}$-matrix solvers with a fast direct $\mathcal {H}$-matrix preconditioner factorization, we create a framework that can be tuned between the extremes of a direct solver and a unpreconditioned iterative solver. This tuning is largely achieved using a single numerical parameter representing the preconditioner tolerance. A more complicated scheme involving two different tolerances is also briefly considered. The proposed framework is demonstrated on a high-order accurate Locally Corrected Nyström solution of surface integral equations for PEC targets. Examples consider various scattering problems including those featuring strong physical resonances. We show that appropriately choosing the preconditioner tolerance achieves the prescribed solution accuracy with minimal CPU time. Expanding from one to two tolerance parameters further enhances the framework by providing the flexibility to dynamically adjust tolerance, enabling higher compression while maintaining accuracy and fast convergence. This adaptive strategy offers significant potential for optimizing the balance between memory usage and CPU time in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信