Mengdie Yu, Hechang Shi, Yancun Yu, Hongda Cheng, Ye Zhang, Changyu Han
{"title":"The effect of poly(D-lactide) on the properties of poly(butylene adipate-co-terephthalate)/poly(L-lactide) blends with stereocomplex crystallites formed in situ","authors":"Mengdie Yu, Hechang Shi, Yancun Yu, Hongda Cheng, Ye Zhang, Changyu Han","doi":"10.1007/s00396-024-05302-6","DOIUrl":"10.1007/s00396-024-05302-6","url":null,"abstract":"<div><p>In order to overcome the drawback of poor mechanical and rheological properties and potentially extend the poly(butylene adipate-co-butylene terephthalate) (PBAT) application market, in this work, we developed PBAT blend with excellent comprehensive performance through blending with biodegradable poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA). Two-step melt blending and constant polylactide (PLA) content were devised to prepared PBAT blend. The effect of PDLA on the crystallization properties, rheological properties, miscibility, morphological structure, and mechanical properties of blend was investigated. According to torque-time curve and DSC results, PLA stereocomplex (SC-PLA) crystallites were formed in blend system. DMA results confirmed that the compatibility between PBAT and PLLA was not changed when PDLA was introduced. SEM results showed that the phase morphology of PBAT/20PLLA/0PDLA blend displayed typical sea-island structure and the particle size of dispersed phase decreased accompanying by agglomeration when PDLA was added. Rheological results showed that percolation SC-PLA network structure had formed and a much denser crystallite network could be formed with high PDLA content, which significantly enhanced rheological properties of blend. The mechanical results demonstrated that the addition of PDLA could significantly enhance mechanical properties. The blend with 6 wt% PDLA presented yield strength, elongation at break, and modulus about 13.3 MPa, 307%, and 221.2 MPa, respectively, the yield strength and modulus increased by 141.7% and 54.7% compared with the pure PBAT.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 11","pages":"1753 - 1764"},"PeriodicalIF":2.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of nano-zinc oxide or calcium chloride incorporated polyvinyl alcohol/chitosan/anthocyanin films for active and intelligent packaging","authors":"Yangyang Qi, Yana Li","doi":"10.1007/s00396-024-05295-2","DOIUrl":"10.1007/s00396-024-05295-2","url":null,"abstract":"<div><p>Polyvinyl alcohol (PVA) and chitosan (CS) were mixed with purple tomato anthocyanins (PTA), and then nano zinc oxide (nano-ZnO) or calcium chloride (CaCl<sub>2</sub>) were added to prepare PVA/CS/PTA/ nano-ZnO (PCP-ZnO) or PVA/CS/PTA/CaCl<sub>2</sub> (PCP-CaCl<sub>2</sub>) films. The effects of nano-ZnO and CaCl<sub>2</sub> on the morphology, pH response, color stability, color reversibility, antibacterial activity, antioxidant activity, mechanical properties, water vapor permeability and UV absorption characteristics of films were studied. In addition, its application in intelligent packaging to monitor the freshness of pork was also studied. It was found that both nano-ZnO and CaCl<sub>2</sub> can reduce the transmittance of the film in the visible light region, and the film with addition of nano-ZnO was more sensitive to pH. During the 14 day storage period, the film modified with CaCl<sub>2</sub> exhibited better color stability. SEM images indicate that the addition of nano-ZnO or CaCl<sub>2</sub> alters the microstructure of the film. The mechanical, antibacterial and antioxidant properties and also the application as freshness indicator of PCP-CaCl<sub>2</sub> film were superior to those of PCP-ZnO film. Those indicated that the prepared PCP-CaCl<sub>2</sub> film is a potential candidate for active and intelligent packaging applications.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 11","pages":"1711 - 1723"},"PeriodicalIF":2.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luíza Schmitz, Diego Serrasol do Amaral, Orestes Estevam Alarcon
{"title":"Physicochemical characterization of ulvan films modified with carnauba wax for enhanced hydrophobicity","authors":"Luíza Schmitz, Diego Serrasol do Amaral, Orestes Estevam Alarcon","doi":"10.1007/s00396-024-05305-3","DOIUrl":"10.1007/s00396-024-05305-3","url":null,"abstract":"<div><p>This study describes the development of ulvan films blended with selected concentrations of carnauba (Copernicia prunifera) wax (0%, 5%, 10% and 15% w/w) to modify its hydrophilic nature. The effects of carnauba wax on the physical, chemical, and mechanical properties of the films were studied. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectrum evidenced the presence of uronic acid carboxyl groups, ester sulfate groups, and the vibrational modes associated with C-O groups in the glycosidic linkage between rhamnose and glucuronic acid, which constitute the characteristic ulvan bands. Higher wax concentrations led to lower intensity of transmission peaks in the range of 3500 cm<sup>-1</sup> to 3200 cm<sup>-1</sup>, indicating an increase in the films' hydrophobicity. This enhanced hydrophobicity is further supported by contact angle measurements, where the wax-free film (CC0) exhibited a contact angle of 51.85 ± 1.61° (hydrophilic), while the film with 15% wax (CC15) showed a contact angle of 66.64 ± 2.15° (hydrophobic). Additionally, a maximum reduction in the solubility of films with 10% carnauba wax compared to wax-free films. Meanwhile, both tensile strength and elongation at break show negligible changes regardless of carnauba wax presence. The findings indicate that carnauba wax-enriched ulvan films enhance hydrophobicity without compromising mechanical integrity, highlighting its potential for use in food packaging applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 11","pages":"1725 - 1735"},"PeriodicalIF":2.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laxmipriya Swain, Ram Prakash Sharma, S. R. Mishra
{"title":"Diversified role of nanoparticle concentration and radiating heat on the natural convection Couette flow through a vertical channel","authors":"Laxmipriya Swain, Ram Prakash Sharma, S. R. Mishra","doi":"10.1007/s00396-024-05294-3","DOIUrl":"10.1007/s00396-024-05294-3","url":null,"abstract":"<div><p>The study of steady natural convection Couette flow is vital in designing as well as the optimization of microfluidic devices, geothermal energy systems, cooling of electronic devices and systems, etc., due to several recent applications. The present investigation aims to analyze radiative heat transfer and dissipative energy in the free convection of Couette flow within a vertically positioned channel. Incorporating carbon nanotubes (CNTs), specifically single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs), into the base fluid water enhances the flow phenomena. Additionally, the explanation of heat source/sink on the energy phenomenon encounters various properties. Further, suitable similarity variables are employed for the transformation of the governing equations. However, the homotopy perturbation method (HPM), an analytical approach, is used for the solution of the coupled ordinary differential equations. The thermophysical parameters and their impact are depicted through graphs, and the comparative analysis is presented via tables.</p><h3>Graphical Abstract</h3>\u0000<ul>\u0000 <li>\u0000 <p>Explore the combined effects of CNT nanoparticle concentrations on the Couette flow through a vertical channel.</p>\u0000 </li>\u0000 <li>\u0000 <p>The inclusion of radiating heat on free convection of nanofluid enriches the flow phenomena.</p>\u0000 </li>\u0000 <li>\u0000 <p>The adaptation of various thermophysical properties, i.e., in particular, the thermal conductivity, shows its effectiveness on the heat transport phenomenon.</p>\u0000 </li>\u0000 <li>\u0000 <p>Clarify different contributing parameters by using the homotopy analysis method.</p>\u0000 </li>\u0000 </ul>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1687 - 1700"},"PeriodicalIF":2.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Déborah Feller, Marius Otten, Michael S. Dimitriyev, Matthias Karg
{"title":"Non-close-packed plasmonic Bravais lattices through a fluid interface-assisted colloidal assembly and transfer process","authors":"Déborah Feller, Marius Otten, Michael S. Dimitriyev, Matthias Karg","doi":"10.1007/s00396-024-05285-4","DOIUrl":"https://doi.org/10.1007/s00396-024-05285-4","url":null,"abstract":"<p>The assembly of colloids at fluid interfaces followed by their transfer to solid substrates represents a robust bottom-up strategy for creating colloidal monolayers over large, macroscopic areas. In this study, we showcase how subtle adjustments in the transfer process, such as varying the contact angle of the substrate and controlling deposition speed and direction, enable the realization of all five two-dimensional Bravais lattices. Leveraging plasmonic core–shell microgels as the building blocks, we successfully engineered non-close-packed plasmonic lattices exhibiting hexagonal, square, rectangular, centered rectangular, and oblique symmetries. Beyond characterizing the monolayer structures and their long-range order, we employed extinction spectroscopy alongside finite difference time domain simulations to comprehensively investigate and interpret the plasmonic response of these monolayers. Additionally, we probed the influence of the refractive index environment on the plasmonic properties by two methods: first, by plasma treatment to remove the microgel shells, and second, by overcoating the resulting gold nanoparticle lattices with a homogeneous refractive index polymer film.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"27 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Bathmanaban, E. P. Siva, S. S. Santra, S. S. Askar, A. Foul, S. Nandi
{"title":"Heat and mass transfer in double-diffusive mixed convection of Casson fluid: biomedical applications","authors":"P. Bathmanaban, E. P. Siva, S. S. Santra, S. S. Askar, A. Foul, S. Nandi","doi":"10.1007/s00396-024-05286-3","DOIUrl":"10.1007/s00396-024-05286-3","url":null,"abstract":"<div><p>The study investigates the heat and mass transfer of mixed peristaltic Casson fluid flow through a porous medium in the presence of electroosmosis. It uses the lubrication LWL-LRN analytical technique to transform flow-control equations into ordinary differential equations. The equation is simplified using a numerical solver, bvp4c, in MATLAB software. The study analyses the behaviour of momentum, thermal, solutal, and nanoparticle concentration using parameters such as the magnetic field parameter, porous, electroosmotic, Prandtl, thermal Grashof number, and solutal concentration. Comparing this work with the existing investigation reveals a high level of concordance regarding the impact of thermophoresis and Brownian variables on momentum fields. The study’s novelty is the double-diffusive effects of Casson fluid, which provides a more accurate characterisation of its flow behaviour with convective boundary conditions over an inclined surface. Such observations are useful in real-life applications to capture the shear and stress-thinning properties and flow of synovial fluid in joints, as well as to understand blood flow in several physiological conditions.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1635 - 1669"},"PeriodicalIF":2.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and biochemical evaluation of daily-thiosulfinate/polyoxyethylene conjugated pH-responsive micelle with enhanced stability, hydrosolubility and antibacterial properties","authors":"Souptik Bhattacharya, Sayamdipta DasChowdhury","doi":"10.1007/s00396-024-05298-z","DOIUrl":"10.1007/s00396-024-05298-z","url":null,"abstract":"<div><p>Diallyl thiosulfinate (DT), a major organosulfur chemical with several notable therapeutic characteristics, is highly unstable and easily degradable which restricts its extensive use in biopharmaceutical commodities. Therefore, utilizing the self-assembly nature of polyoxyethylene (Brij S20 and Brij 58), appropriate pH-responsive micelle carrier systems have been designed to entrap and improve DT’s stability at an ambient temperature (25 °C) while preserving its quantity and biological activity. Comparing with the Brij S20 with the Brij 58 micelle carrier system, the latter demonstrated superior stability and entrapment of DT. In addition, it was found that DT’s stability in micellized condition is significantly influenced by both pH and temperature (<i>p</i> < 0.05). The micelle system was capable enough to reduce degradation significantly. Additionally, the liberation of DT from micelle is greatly aided by acidic pH 1.5. Around 77% DT was released from Brij 58 system. Various biochemical analyses were done. The liberation of DT from the micelle in a controlled manner using lower pH as stimuli may facilitate its biological action at an individual’s gastrointestinal lumen or near cancer cell environment having lower pH. Additionally, it was made sure that the micellization method did not impair DT’s bioactivity or reduce appropriate biocompatibility. The current study increases the likelihood of creating a commercially available DT-loaded, micelle-based formulation for application in biopharma and food-related industries.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1603 - 1616"},"PeriodicalIF":2.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhalaxmi Dey, Surender Ontela, P. K. Pattnaik, S. R. Mishra
{"title":"Convective heat transfer of tri-hybrid nanofluid through a curved expanding surface with the impact of velocity slip and exponential heat source","authors":"Subhalaxmi Dey, Surender Ontela, P. K. Pattnaik, S. R. Mishra","doi":"10.1007/s00396-024-05291-6","DOIUrl":"10.1007/s00396-024-05291-6","url":null,"abstract":"<div><p>Obtaining an efficient heat transfer fluid is currently a significant challenge in various industries, including production processes and biomedical applications such as drug delivery systems. In line with this, the study aims to investigate the velocity slip impact along with convective heat transfer on the flow of tri-hybrid nanofluid over an expanding curved surface. Electrically conducting fluid suspended with nanoparticles enhances thermal properties; however, incorporating an exponential heat source with convective heat transfer properties further energises heat transport phenomena. The proposed model, described by nonlinear differential equations, is transformed into non-dimensional nonlinear ordinary differential equations using suitable similarity rules. These equations are then solved by using a semi-analytical technique, i.e., the Adomian decomposition method with controlled parameters. Moreover, the important outcomes are that the combined effect of all the nanoparticles forms the tri-hybrid nanofluid overrides the fact of nanofluid and hybrid nanofluid in all cases of velocity and temperature distribution. Further, the fluid temperature augments significantly for the enhanced magnetization, but the impact is reversed for the fluid velocity.</p><h3>Graphical Abstract</h3><ul>\u0000 <li>\u0000 <p>The two-dimensional flow of tri-hybrid nanofluid in association with the role of velocity slip and convective heat transport properties shows a greater impact for the higher thermal conductivity.</p>\u0000 </li>\u0000 <li>\u0000 <p>The electrically conducting fluid, due to the imposition of the transverse magnetic field along with an exponential heat source, has several industrial as well as engineering applications.</p>\u0000 </li>\u0000 <li>\u0000 <p>The dissipative heat effect, including Joule dissipation, is vital in cancer therapy, drug delivery systems, peristaltic pumping processes, etc.</p>\u0000 </li>\u0000 </ul><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1573 - 1590"},"PeriodicalIF":2.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells","authors":"Cheng Jian, Yi Yu, Dingze Yu, Ping Chen, Jing Yan, Xuefeng Chen","doi":"10.1007/s00396-024-05296-1","DOIUrl":"10.1007/s00396-024-05296-1","url":null,"abstract":"<div><p>The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×10<sup>4</sup> ppm NaCl and CaCl<sub>2</sub> concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m<sup>3</sup>/min.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1591 - 1601"},"PeriodicalIF":2.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Berger, Maximilian Theis, Henrike von Wedel, Tamino Rößler, Georg Papastavrou, Jürgen Senker, Markus Retsch
{"title":"A versatile method for facile and reliable synthesis of colloidal particles with a size and composition gradient","authors":"Alexander Berger, Maximilian Theis, Henrike von Wedel, Tamino Rößler, Georg Papastavrou, Jürgen Senker, Markus Retsch","doi":"10.1007/s00396-024-05282-7","DOIUrl":"https://doi.org/10.1007/s00396-024-05282-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Colloidal particles play a pivotal role in numerous applications across various disciplines, many of which necessitate precise control over particle size and size distribution. Seeded growth reactions have been established as effective methods for reproducibly accessing tailor-made particles. However, conventional batch-wise syntheses only yield discrete particle sizes. With the increasing focus on complex structures in current research, there is a demand for innovative and adaptable techniques to produce colloidal particles with precise sizes and size distributions. The Controlled Emulsion Extraction Process (CrEEP) is capable of addressing this challenge. Here, we present in detail how this synthesis works and demonstrate its reliability and versatility. Our approach exploits the time-dependent particle growth and enables accessing dispersions of controlled particle size distributions. We highlight these possibilities through a variation of the monomer feed and feed composition, resulting in gradual changes in both size and glass transition temperature, respectively. Beyond its application to polymer particles, CrEEP can be seamlessly extended to other seeded-growth mechanisms, such as the silica Stöber synthesis. Consequently, the Controlled Extraction Stöber Process (CrESP) similarly yields a size gradient, showcasing the generality of this synthetic advancement.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"55 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}